弱監(jiān)督學(xué)習(xí)文章列表

https://zhuanlan.zhihu.com/p/23811946

1,? Di Lin, Jifeng Dai, Jiaya Jia, Kaiming He, and Jian Sun."ScribbleSup: Scribble-Supervised Convolutional Networks for Semantic Segmentation". IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016

2,? Pathak, Deepak, Philipp Krahenbuhl, and Trevor Darrell. "Constrained convolutional neural networks for weakly supervised segmentation."Proceedings of the IEEE International Conference on Computer Vision. 2015.

3,? Papandreou, George, et al. "Weakly-and semi-supervised learning of a DCNN for semantic image segmentation."arXiv preprint arXiv:1502.02734(2015).

4, Xu, Jia, Alexander G. Schwing, and Raquel Urtasun. "Learning to segment under various forms of weak supervision."Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.




轉(zhuǎn)自知乎 作者: travelsea

一, 基于bouding box的學(xué)習(xí)

1投慈, Dai, Jifeng, Kaiming He, and Jian Sun. "Boxsup: Exploiting bounding boxes to supervise

convolutional networks for semantic segmentation." ICCV.? 2015.

Abstract: propose a method only using bounding box annotation. The basic idea is to iterate between automatically generating region proposals and training CNNs. Good results obtained on PASCAL-2012 and PASCAL-CONTEXT.

2钾唬,Rajchl, Martin, et al. "DeepCut: Object Segmentation from Bounding Box Annotations using Convolutional Neural Networks." arXiv preprint arXiv:1605.07866 (2016).

Abstract: An extension from GrabCut method. The problem is formulated as an energy minimization problem over a densely-connected CRF and iteratively update the training targets. Applied this method to brain and lung segmentation problems on fetal MRI and obtained encouraging results.

二镶骗,基于scribbles的學(xué)習(xí)

1,?i?ek, ?zgün, et al. "3d u-net: learning dense volumetric segmentation from sparse annotation." MICCAI 2016.

Abstract: Introduced a network for volumetric segmentation that learns from sparsely annotated volumetric images. It extended the U-Net to 3D and performs on-th-fly elastic deformation for efficient data agumentation during training.

2,Lin, Di, et al. "ScribbleSup: Scribble-Supervised Convolutional Networks for Semantic Segmentation." arXiv preprint arXiv:1604.05144 (2016).

Abstract: The algorithm is based on a graphic model that jointly propagates information from scribbles to unmarked pixels and learns network parameters. Excellent results were shown on PASCAL VOC and PASCAL CONTEXT datasets.

三赃春, 基于image-tags的學(xué)習(xí)

1,Pathak, Deepak, Philipp Krahenbuhl, and Trevor Darrell. "Constrained convolutional neural

networks for weakly supervised segmentation." ICCV 2015.

Abstract: Present an approach to learn dense pixel-wise labeling from image-level tags. Each image-level tag imposes constraints on the output labeling of a CNN classifier. Extensitive experiments demonstrate the generality of this new learning framework.

2, Vezhnevets, Alexander, and Joachim M. Buhmann. "Towards weakly supervised semantic segmentation

by means of multiple instance and multitask learning." CVPR 2010.

Abstract: Semantic Texton Forest (STF) is used as the basic framework and extended for the Multiple Instance Leraning setting. Multitask learning (MTL) is used to regularize the solution. Here, an external task of geometric context estimation is used to improve on the task of semantic segmentation. Experimental results on the MSRC21 VOC2007 datasets were shown.

四静秆, 多種標(biāo)記混合使用:image-tag, bounding box and scribbles:

1,Papandreou, George, et al. "Weakly-and semi-supervised learning of a DCNN for semantic image segmentation." arXiv preprint arXiv:1502.02734 (2015).

Abstract: Studied two problems (1) weakly annotated training data such as bounding boxes or image-level labels and (2) a combination of few strongly labeled and many weakly labeled images. EM methods were combined with the previously proposed DeepLab segmentation framework. Competitive results on PASCAL VOC 2012 were shown.

2,Xu, Jia, Alexander G. Schwing, and Raquel Urtasun. "Learning to segment under various forms of weak supervision." CVPR 2015.

Abstract: Proposed a unified approach that incorporates various forms of weak supervisions ( image level tags, bounding boxes, and partial labels) to produce a pixel-wise labeling. The task is formulated as a max-margin clustering framework, where knowledge from supervision is included via constraints, restricting the assignment of pixels to class labels. Experiments show that this method ourperforms the state-of-the-art 12% on per-class accuracy.

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末牵素,一起剝皮案震驚了整個(gè)濱河市严衬,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌笆呆,老刑警劉巖请琳,帶你破解...
    沈念sama閱讀 211,948評論 6 492
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件懦尝,死亡現(xiàn)場離奇詭異呀洲,居然都是意外死亡兑燥,警方通過查閱死者的電腦和手機(jī)捷泞,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 90,371評論 3 385
  • 文/潘曉璐 我一進(jìn)店門睹酌,熙熙樓的掌柜王于貴愁眉苦臉地迎上來佳励,“玉大人疲吸,你說我怎么就攤上這事敞葛。” “怎么了圾旨?”我有些...
    開封第一講書人閱讀 157,490評論 0 348
  • 文/不壞的土叔 我叫張陵踱讨,是天一觀的道長。 經(jīng)常有香客問我碳胳,道長勇蝙,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 56,521評論 1 284
  • 正文 為了忘掉前任挨约,我火速辦了婚禮味混,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘诫惭。我一直安慰自己翁锡,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 65,627評論 6 386
  • 文/花漫 我一把揭開白布夕土。 她就那樣靜靜地躺著馆衔,像睡著了一般。 火紅的嫁衣襯著肌膚如雪怨绣。 梳的紋絲不亂的頭發(fā)上角溃,一...
    開封第一講書人閱讀 49,842評論 1 290
  • 那天,我揣著相機(jī)與錄音篮撑,去河邊找鬼减细。 笑死,一個(gè)胖子當(dāng)著我的面吹牛赢笨,可吹牛的內(nèi)容都是我干的未蝌。 我是一名探鬼主播,決...
    沈念sama閱讀 38,997評論 3 408
  • 文/蒼蘭香墨 我猛地睜開眼茧妒,長吁一口氣:“原來是場噩夢啊……” “哼萧吠!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起桐筏,我...
    開封第一講書人閱讀 37,741評論 0 268
  • 序言:老撾萬榮一對情侶失蹤纸型,失蹤者是張志新(化名)和其女友劉穎,沒想到半個(gè)月后梅忌,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體狰腌,經(jīng)...
    沈念sama閱讀 44,203評論 1 303
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 36,534評論 2 327
  • 正文 我和宋清朗相戀三年铸鹰,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了癌别。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 38,673評論 1 341
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡蹋笼,死狀恐怖展姐,靈堂內(nèi)的尸體忽然破棺而出躁垛,到底是詐尸還是另有隱情,我是刑警寧澤圾笨,帶...
    沈念sama閱讀 34,339評論 4 330
  • 正文 年R本政府宣布教馆,位于F島的核電站,受9級特大地震影響擂达,放射性物質(zhì)發(fā)生泄漏土铺。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 39,955評論 3 313
  • 文/蒙蒙 一板鬓、第九天 我趴在偏房一處隱蔽的房頂上張望悲敷。 院中可真熱鬧,春花似錦俭令、人聲如沸后德。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,770評論 0 21
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽瓢湃。三九已至,卻和暖如春赫蛇,著一層夾襖步出監(jiān)牢的瞬間绵患,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 32,000評論 1 266
  • 我被黑心中介騙來泰國打工悟耘, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留落蝙,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 46,394評論 2 360
  • 正文 我出身青樓作煌,卻偏偏與公主長得像掘殴,于是被迫代替她去往敵國和親赚瘦。 傳聞我的和親對象是個(gè)殘疾皇子粟誓,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 43,562評論 2 349

推薦閱讀更多精彩內(nèi)容