原本還有第四個部分个唧,小潔老師講了另一個R包下載表達矩陣和臨床信息的褪子,
TCGA-4.使用RTCGA包獲取數(shù)據(jù)
但是這個包有個缺點就是數(shù)據(jù)更新不及時监透,因此當時看到時候我就沒有跟學了表谊。直接跳到第五步TCGA-5.(轉錄組)差異分析三大R包及其結果對比
但是呢,由于沒跟學第四步這一步獲取數(shù)據(jù)并做數(shù)據(jù)清洗的時候出了問題,一直沒能完成,后來昨天花了點時間學了冰糖在菜鳥團的推文也是小潔老師的第四步教程相關的內容,對比來看一步步調試券躁,再加上從技能樹推文得到的小潔老師的畫圖函數(shù)后,終于完成了第五步的學習。
還是很有收獲的也拜。
1.提前準備安裝和加載R包
rm(list = ls())
options(stringsAsFactors = F)
if(!require(stringr))install.packages('stringr')
if(!require(ggplotify))install.packages("ggplotify")
if(!require(patchwork))install.packages("patchwork")
if(!require(cowplot))install.packages("cowplot")
if(!require(DESeq2))install.packages('DESeq2')
if(!require(edgeR))install.packages('edgeR')
if(!require(limma))install.packages('limma')
2.準備數(shù)據(jù)
本示例的數(shù)據(jù)是TCGA-KIRC的表達矩陣以舒。tcga樣本編號14-15位是隱藏分組信息的,詳見:
TCGA的樣本id里藏著分組信息
TCGA樣本id,分組信息是在這個id的第14-15位慢哈,01-09是tumor蔓钟,10-29是normal。
#TCGA-KIRC
library(TCGAbiolinks)
#可以查看所有支持的癌癥種類的縮寫
#TCGAbiolinks:::getGDCprojects()$project_id
#還是選擇之前的例子
cancer_type="TCGA-KIRC"
clinical <- GDCquery_clinic(project = cancer_type, type = "clinical")
clinical[1:4,1:4]
dim(clinical)
query <- GDCquery(project = cancer_type,
data.category = "Transcriptome Profiling",
data.type = "miRNA Expression Quantification",
workflow.type = "BCGSC miRNA Profiling")
GDCdownload(query, method = "api", files.per.chunk = 50)
expdat <- GDCprepare(query = query)
expdat[1:3,1:3]
library(tibble)
rownames(expdat) <- NULL
expdat <- column_to_rownames(expdat,var = "miRNA_ID")
expdat[1:3,1:3]
exp = t(expdat[,seq(1,ncol(expdat),3)])
exp[1:4,1:4]
expr=exp
rowName <- str_split(rownames(exp),'_',simplify = T)[,3]
expr<- apply(expr,2,as.numeric)
expr<- na.omit(expr)
dim(expr)
expr <- expr[,apply(expr, 2,function(x){sum(x>1)>10})]
rownames(expr) <- rowName
dim(expr)
expr[1:4,1:4]
save(expr,clinical,file = "tcga-kirc-download.Rdata")
rm(list = ls())
load("tcga-kirc-download.Rdata") #獲取初步下載數(shù)據(jù)卵贱。
meta <- clinical
colnames(meta)
meta <- meta[,c("submitter_id","vital_status",
"days_to_death","days_to_last_follow_up",
"race",
"age_at_diagnosis",
"gender" ,
"ajcc_pathologic_stage")]
expr=t(expr)
expr[1:4,1:4]
group_list <- ifelse(as.numeric(str_sub(colnames(expr),14,15))<10,"tumor","normal")
group_list <- factor(group_list,levels = c("normal","tumor"))
table(group_list)
# normal tumor
# 71 545
save(expr,group_list,file = "tcga-kirc-raw.Rdata")
由于不知道小潔老師做了怎樣的過濾滥沫,我得到的結果不同
我覺得應該是在mata這個代碼步驟后面選擇一個指標過濾掉一些數(shù)據(jù)。
先放著键俱,這個代碼在這個步驟中沒有用到佣谐。以后應該會用到。
由于不會自己寫代碼方妖,后面的分析基本上就是走的小潔老師教程的內容。
3.三大R包的差異分析
#Deseq2
library(DESeq2)
colData <- data.frame(row.names =colnames(expr),
condition=group_list)
dds <- DESeqDataSetFromMatrix(
countData = expr,
colData = colData,
design = ~ condition)
#參考因子應該是對照組 dds$condition <- relevel(dds$condition, ref = "untrt")
dds <- DESeq(dds)
# 兩兩比較
res <- results(dds, contrast = c("condition",rev(levels(group_list))))
resOrdered <- res[order(res$pvalue),] # 按照P值排序
DEG <- as.data.frame(resOrdered)
head(DEG)
# 去除NA值
DEG <- na.omit(DEG)
#添加change列標記基因上調下調
#logFC_cutoff <- with(DEG,mean(abs(log2FoldChange)) + 2*sd(abs(log2FoldChange)) )
logFC_cutoff <- 1
DEG$change = as.factor(
ifelse(DEG$pvalue < 0.05 & abs(DEG$log2FoldChange) > logFC_cutoff,
ifelse(DEG$log2FoldChange > logFC_cutoff ,'UP','DOWN'),'NOT')
)
head(DEG)
DESeq2_DEG <- DEG
#edgeR
library(edgeR)
dge <- DGEList(counts=expr,group=group_list)
dge$samples$lib.size <- colSums(dge$counts)
dge <- calcNormFactors(dge)
design <- model.matrix(~0+group_list)
rownames(design)<-colnames(dge)
colnames(design)<-levels(group_list)
dge <- estimateGLMCommonDisp(dge,design)
dge <- estimateGLMTrendedDisp(dge, design)
dge <- estimateGLMTagwiseDisp(dge, design)
fit <- glmFit(dge, design)
fit2 <- glmLRT(fit, contrast=c(-1,1))
DEG=topTags(fit2, n=nrow(expr))
DEG=as.data.frame(DEG)
logFC_cutoff <- with(DEG,mean(abs(logFC)) + 2*sd(abs(logFC)) )
logFC_cutoff <- 1
DEG$change = as.factor(
ifelse(DEG$PValue < 0.05 & abs(DEG$logFC) > logFC_cutoff,
ifelse(DEG$logFC > logFC_cutoff ,'UP','DOWN'),'NOT')
)
head(DEG)
table(DEG$change)
edgeR_DEG <- DEG
#limma-voom
library(limma)
design <- model.matrix(~0+group_list)
colnames(design)=levels(group_list)
rownames(design)=colnames(expr)
dge <- DGEList(counts=expr)
dge <- calcNormFactors(dge)
logCPM <- cpm(dge, log=TRUE, prior.count=3)
v <- voom(dge,design, normalize="quantile")
fit <- lmFit(v, design)
constrasts = paste(rev(levels(group_list)),collapse = "-")
cont.matrix <- makeContrasts(contrasts=constrasts,levels = design)
fit2=contrasts.fit(fit,cont.matrix)
fit2=eBayes(fit2)
DEG = topTable(fit2, coef=constrasts, n=Inf)
DEG = na.omit(DEG)
#logFC_cutoff <- with(DEG,mean(abs(logFC)) + 2*sd(abs(logFC)) )
logFC_cutoff <- 1
DEG$change = as.factor(
ifelse(DEG$P.Value < 0.05 & abs(DEG$logFC) > logFC_cutoff,
ifelse(DEG$logFC > logFC_cutoff ,'UP','DOWN'),'NOT')
)
head(DEG)
limma_voom_DEG <- DEG
save(DESeq2_DEG,edgeR_DEG,limma_voom_DEG,group_list,file = "DEG.Rdata")
#差異分析結果的可視化
rm(list = ls())
load("tcga-kirc-raw.Rdata")
load("DEG.Rdata")
source("3-plotfunction.R")
logFC_cutoff <- 1
expr[1:4,1:4]
dat = log(expr+1)
pca.plot = draw_pca(dat,group_list)
cg1 = rownames(DESeq2_DEG)[DESeq2_DEG$change !="NOT"]
cg2 = rownames(edgeR_DEG)[edgeR_DEG$change !="NOT"]
cg3 = rownames(limma_voom_DEG)[limma_voom_DEG$change !="NOT"]
h1 = draw_heatmap(expr[cg1,],group_list)
h2 = draw_heatmap(expr[cg2,],group_list)
h3 = draw_heatmap(expr[cg3,],group_list)
v1 = draw_volcano(test = DESeq2_DEG[,c(2,5,7)],pkg = 1)
v2 = draw_volcano(test = edgeR_DEG[,c(1,4,6)],pkg = 2)
v3 = draw_volcano(test = limma_voom_DEG[,c(1,4,7)],pkg = 3)
library(patchwork)
(h1 + h2 + h3) / (v1 + v2 + v3) +plot_layout(guides = 'collect')
#(v1 + v2 + v3) +plot_layout(guides = 'collect')
ggsave("heat_volcano.png",width = 21,height = 9)
#三大R包差異基因對比
# 三大R包差異基因交集
UP=function(df){
rownames(df)[df$change=="UP"]
}
DOWN=function(df){
rownames(df)[df$change=="DOWN"]
}
up = intersect(intersect(UP(DESeq2_DEG),UP(edgeR_DEG)),UP(limma_voom_DEG))
down = intersect(intersect(DOWN(DESeq2_DEG),DOWN(edgeR_DEG)),DOWN(limma_voom_DEG))
hp = draw_heatmap(expr[c(up,down),],group_list)
#上調罚攀、下調基因分別畫維恩圖
up.plot <- venn(UP(DESeq2_DEG),UP(edgeR_DEG),UP(limma_voom_DEG),
"UPgene"
)
down.plot <- venn(DOWN(DESeq2_DEG),DOWN(edgeR_DEG),DOWN(limma_voom_DEG),
"DOWNgene"
)
library(cowplot)
library(ggplotify)
up.plot = as.ggplot(as_grob(up.plot))
down.plot = as.ggplot(as_grob(down.plot))
library(patchwork)
#up.plot + down.plot
pca.plot + hp+up.plot +down.plot
ggsave("deg.png",height = 10,width = 10)
整個流程走完得到的結果如下:
熱圖火山圖
PCA党觅,熱圖,韋恩圖