概念:
二叉樹(shù)(Binary Tree)是n(n≥0)個(gè)結(jié)點(diǎn)的有限集合,該集合或者為空集(稱為空二叉樹(shù)),或者由一個(gè)根結(jié)點(diǎn)和兩棵互不相交的笤虫、分別稱為根結(jié)點(diǎn)的左子樹(shù)和右子樹(shù)的二叉樹(shù)組成。
1、二叉樹(shù)類型
1加勤、斜樹(shù)
2、滿二叉樹(shù)
3同波、完全二叉樹(shù)
2鳄梅、二叉樹(shù)的存儲(chǔ)結(jié)構(gòu)
1、順序存儲(chǔ)
2未檩、鏈?zhǔn)酱鎯?chǔ)
3戴尸、二叉樹(shù)的遍歷
1、前序(DLR)
規(guī)則是若二叉樹(shù)為空冤狡,則空操作返回孙蒙,否則先訪問(wèn)跟結(jié)點(diǎn),然后前序遍歷左子樹(shù)悲雳,再前序遍歷右子樹(shù)挎峦。
void ProOrderTraverse(Tree T){
if(T == null){
return;
}
printf(“%c”,T-data);
ProOrderTraverse(T->lchild);
ProOrderTraverse(T->rchild);
}
2、中序(LDR)
規(guī)則是若樹(shù)為空合瓢,則空操作返回坦胶,否則從根結(jié)點(diǎn)開(kāi)始(注意并不是先訪問(wèn)根結(jié)點(diǎn)),中序遍歷根結(jié)點(diǎn)的左子樹(shù)晴楔,然后是訪問(wèn)根結(jié)點(diǎn)顿苇,最后中序遍歷右子樹(shù)
void ProOrderTraverse(Tree T){
if(T == null){
return;
}
ProOrderTraverse(T->lchild);
printf(“%c”,T-data);
ProOrderTraverse(T->rchild);
}
3、后序(LRD)
規(guī)則是若樹(shù)為空税弃,則空操作返回纪岁,否則從左到右先葉子后結(jié)點(diǎn)的方式遍歷訪問(wèn)左右子樹(shù),最后是訪問(wèn)根結(jié)點(diǎn)则果。
void ProOrderTraverse(Tree T){
if(T == null){
return;
}
ProOrderTraverse(T->lchild);
ProOrderTraverse(T->rchild);
printf(“%c”,T-data);
}
public class BinarayTree {
Node<String> root;
public BinarayTree(String data){
root=new Node<>(data,null,null);
}
public void createTree(){
Node<String> nodeB=new Node<String>("B",null,null);
Node<String> nodeC=new Node<String>("C",null,null);
Node<String> nodeD=new Node<String>("D",null,null);
Node<String> nodeE=new Node<String>("E",null,null);
Node<String> nodeF=new Node<String>("F",null,null);
Node<String> nodeG=new Node<String>("G",null,null);
Node<String> nodeH=new Node<String>("H",null,null);
Node<String> nodeJ=new Node<String>("J",null,null);
Node<String> nodeI=new Node<String>("I",null,null);
root.leftChild=nodeB;
root.rightChild=nodeC;
nodeB.leftChild=nodeD;
nodeC.leftChild=nodeE;
nodeC.rightChild=nodeF;
nodeD.leftChild=nodeG;
nodeD.rightChild=nodeH;
nodeE.rightChild=nodeJ;
nodeH.leftChild=nodeI;
}
/**
* 中序訪問(wèn)樹(shù)的所有節(jié)點(diǎn)
*/
public void midOrderTraverse(Node root){//邏輯
if(root==null){
return;
}
midOrderTraverse(root.leftChild);//邏輯
System.out.println("mid:"+root.data);//輸出
midOrderTraverse(root.rightChild);//邏輯
}
/**
* 前序訪問(wèn)樹(shù)的所有節(jié)點(diǎn) Arrays.sort();
*/
public void preOrderTraverse(Node root){
if(root==null){
return;
}
System.out.println("pre:"+root.data);
preOrderTraverse(root.leftChild);
preOrderTraverse(root.rightChild);
}
/**
* 后序訪問(wèn)樹(shù)的所有節(jié)點(diǎn)
*/
public void postOrderTraverse(Node root){
if(root==null){
return;
}
postOrderTraverse(root.leftChild);
postOrderTraverse(root.rightChild);
System.out.println("post:"+root.data);
}
/**
* 節(jié)點(diǎn)
*/
public class Node<T>{
T data;
Node<T> leftChild;
Node<T> rightChild;
public Node(T data, Node<T> leftChild, Node<T> rightChild) {
this.data = data;
this.leftChild = leftChild;
this.rightChild = rightChild;
}
}
}
public class ExampleUnitTest {
@Test
public void addition_isCorrect() throws Exception {
BinarayTree binarayTree=new BinarayTree("A");
binarayTree.createTree();
binarayTree.midOrderTraverse(binarayTree.root);
binarayTree.preOrderTraverse(binarayTree.root);
binarayTree.postOrderTraverse(binarayTree.root);
}
}
打印結(jié)果:
mid:G
mid:D
mid:I
mid:H
mid:B
mid:A
mid:E
mid:J
mid:C
mid:F
pre:A
pre:B
pre:D
pre:G
pre:H
pre:I
pre:C
pre:E
pre:J
pre:F
post:G
post:I
post:H
post:D
post:B
post:J
post:E
post:F
post:C
post:A