本文是參考學(xué)習(xí)CNS圖表復(fù)現(xiàn)08—腫瘤單細(xì)胞數(shù)據(jù)第一次分群通用規(guī)則
的學(xué)習(xí)筆記『闼可能根據(jù)學(xué)習(xí)情況有所改動(dòng)蟆湖。
文章的第一次分群按照 :
immune (CD45+,PTPRC),
epithelial/cancer (EpCAM+,EPCAM),
stromal (CD10+,MME,fibo or CD31+,PECAM1,endo)
的表達(dá)量分布篇裁,文章提到的各大亞群細(xì)胞數(shù)量是:(epithelial cells [n = 5,581], immune cells [n = 13,431], stromal cells [n = 4,249]). 我們可以很容易復(fù)現(xiàn)出來(lái)。
首先檢查第一次分群的4個(gè)基因
rm(list=ls())
options(stringsAsFactors = F)
library(Seurat)
library(ggplot2)
load(file = 'first_sce.Rdata')
sce=sce.first
# epithelial/cancer (EpCAM+,EPCAM),
# immune (CD45+,PTPRC),
# stromal (CD10+,MME,fibo or CD31+,PECAM1,endo)
genes_to_check = c("PTPRC","EPCAM",'PECAM1','MME',"CD3G","CD3E", "CD79A")
p <- DotPlot(sce, features = genes_to_check,
assay='RNA' )
p
出圖如下:
為了避免出錯(cuò)百框,需要先定義下epi亞群
EPCAM=dat[dat$features.plot=='EPCAM',]
fivenum(EPCAM$avg.exp.scaled)
epi=EPCAM[EPCAM$avg.exp.scaled > -0.5,]$id
epi
sce@meta.data$immune_annotation <-ifelse(sce@meta.data$seurat_clusters %in% imm ,'immune',
ifelse(sce@meta.data$seurat_clusters %in% epi ,'epi','stromal') )
# MAke a table
table(sce@meta.data$immune_annotation)
# The resulting cell clusters were annotated as immune, stromal (fibroblasts, endothelial cells, and melanocytes), or epithelial cells
# (epithelial cells [n = 5,581], immune cells [n = 13,431], stromal cells [n = 4,249]).
我們的數(shù)量是:得到的細(xì)胞數(shù)量也跟文章差不多:
> table(sce@meta.data$immune_annotation)
epi immune stromal
5444 13792 4278
肉眼可以看到的分群如下:
> imm # immune (CD45+,PTPRC),
[1] "0" "1" "2" "10" "11" "14" "16" "17" "19" "21" "5"
> epi # epithelial/cancer (EpCAM+,EPCAM),
[1] "3" "8" "9" "12" "15" "17" "18" "20" "22"
> stromal
[1] "4" "6" "7" "13" "23" "24"
第一次分群后,繼續(xù)看文章列出來(lái)了的各種基因的在這3個(gè)主要的細(xì)胞亞群表達(dá)情況,代碼如下:
genes_to_check = c("PTPRC","EPCAM","CD3G","CD3E", "CD79A", "BLNK","MS4A1", "CD68", "CSF1R",
"MARCO", "CD207", "PMEL", "ALB", "C1QB", "CLDN5", "FCGR3B", "COL1A1")
# All on Dotplot
p <- DotPlot(sce, features = genes_to_check,group.by = 'immune_annotation') + coord_flip()
p
出圖如下:
可以說(shuō)是非常完美啦晃听!
看了大概一百多篇,基本上都是首先區(qū)分成為:上皮細(xì)胞、免疫細(xì)胞能扒、內(nèi)皮細(xì)胞和成纖維細(xì)胞
比如2020年9月24日佣渴,來(lái)自新加坡基因組研究院的Ramanuj DasGupta團(tuán)隊(duì)在Cell上在線發(fā)表題為“Onco-fetal Reprogramming of Endothelial Cells Drives Immunosuppressive Macrophages in Hepatocellular Carcinoma”的文章,繪制了一張人類(lèi)肝臟從發(fā)育到疾病的單細(xì)胞圖譜赫粥,揭示了一個(gè)可以同時(shí)驅(qū)動(dòng)胎肝發(fā)育和HCC的免疫抑制的腫瘤-胚胎重編程生態(tài)系統(tǒng)观话,為HCC的治療干預(yù)提供了新靶點(diǎn)。也是首先區(qū)分成為:上皮細(xì)胞越平、免疫細(xì)胞频蛔、內(nèi)皮細(xì)胞和成纖維細(xì)胞,如下:
最簡(jiǎn)單的比較秦叛,就是不同細(xì)胞亞群在不同的生物學(xué)分組的單細(xì)胞樣品的比例差異晦溪,其次是各種各樣的差異表達(dá)量分析。然后可以對(duì)第一次得到上皮細(xì)胞挣跋、免疫細(xì)胞三圆、內(nèi)皮細(xì)胞和成纖維細(xì)胞分群進(jìn)行再分群。
尤其是免疫細(xì)胞避咆,分群非常復(fù)雜舟肉。后續(xù)我們慢慢講。