無標(biāo)題文章

Divides the population into several islands. Performs traditional genetic operations on each island separately, then migrates individuals between the islands. Searches many designs and multiple locations of the design space.
In the Multi-Island Genetic Algorithm (MIGA), like other genetic algorithms, each design point is perceived as an individual with a certain value of fitness based on the value of the objective function and constraint penalty. An individual with a better value of the objective function and penalty has a higher fitness value. Each individual is represented by a chromosome in which the values of design variables are converted into a binary string of 0 and 1 characters. This conversion is called "encoding" of the individual. Each population of individuals (a set of design points) is altered via the genetic operations of "selection", "crossover", and "mutation". Each design of a population is then evaluated and its fitness value is determined. A new population of designs is selected from the original set of designs: a process based on a survival of the fittest scheme. New designs are created by the genetic crossover operation: chromosomes of two individuals are crossed at 2 points and the genes between those points are swapped in the two chromosomes resulting in two new individuals. Genetic operation of mutation changes a value of a randomly selected gene in a chromosome to further increase the variability of the population and avoid stagnation in the evolution process. Multi-Island Genetic Algorithm preserves the best individuals from the previous generation without alteration. This operation is called "elitism". Elitism guarantees that the best genetic material is carried over to the child generation.
The selection operation in Multi-Island Genetic Algorithm employs the so-called "tournament selection" scheme. In the tournament selection, the best individuals are selected not from the whole population, but rather from a smaller subset of randomly selected individuals. This scheme allows for duplicate individuals in the child population. The size of the subset from which each best individual is selected is calculated using the value of the relative tournament size. Reducing the relative tournament size will increase the randomness in the selection process. Increasing the tournament size will result in more duplicates of the best individuals in the child population.
The main feature of Multi-Island Genetic Algorithm that distinguishes it from traditional genetic algorithms is the fact that each population of individuals is divided into several sub-populations called "islands". All traditional genetic operations are performed separately on each sub-population. Some individuals are then selected from each island and migrated to different islands periodically. This operation is called "migration". Two parameters control the migration process: migration interval which is the number of generations between each migration, and migration rate which is the percentage of individuals migrated from each island at the time of migration.

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末候址,一起剝皮案震驚了整個濱河市,隨后出現(xiàn)的幾起案子性湿,更是在濱河造成了極大的恐慌谁鳍,老刑警劉巖筹裕,帶你破解...
    沈念sama閱讀 221,430評論 6 515
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異,居然都是意外死亡砸逊,警方通過查閱死者的電腦和手機(jī)悉罕,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 94,406評論 3 398
  • 文/潘曉璐 我一進(jìn)店門赤屋,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人壁袄,你說我怎么就攤上這事类早。” “怎么了嗜逻?”我有些...
    開封第一講書人閱讀 167,834評論 0 360
  • 文/不壞的土叔 我叫張陵涩僻,是天一觀的道長。 經(jīng)常有香客問我栈顷,道長逆日,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 59,543評論 1 296
  • 正文 為了忘掉前任萄凤,我火速辦了婚禮室抽,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘靡努。我一直安慰自己坪圾,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 68,547評論 6 397
  • 文/花漫 我一把揭開白布颤难。 她就那樣靜靜地躺著神年,像睡著了一般。 火紅的嫁衣襯著肌膚如雪行嗤。 梳的紋絲不亂的頭發(fā)上已日,一...
    開封第一講書人閱讀 52,196評論 1 308
  • 那天,我揣著相機(jī)與錄音栅屏,去河邊找鬼飘千。 笑死,一個胖子當(dāng)著我的面吹牛栈雳,可吹牛的內(nèi)容都是我干的护奈。 我是一名探鬼主播,決...
    沈念sama閱讀 40,776評論 3 421
  • 文/蒼蘭香墨 我猛地睜開眼哥纫,長吁一口氣:“原來是場噩夢啊……” “哼霉旗!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 39,671評論 0 276
  • 序言:老撾萬榮一對情侶失蹤厌秒,失蹤者是張志新(化名)和其女友劉穎读拆,沒想到半個月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體鸵闪,經(jīng)...
    沈念sama閱讀 46,221評論 1 320
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡檐晕,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 38,303評論 3 340
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了蚌讼。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片辟灰。...
    茶點(diǎn)故事閱讀 40,444評論 1 352
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖篡石,靈堂內(nèi)的尸體忽然破棺而出芥喇,到底是詐尸還是另有隱情,我是刑警寧澤夏志,帶...
    沈念sama閱讀 36,134評論 5 350
  • 正文 年R本政府宣布乃坤,位于F島的核電站苛让,受9級特大地震影響沟蔑,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜狱杰,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,810評論 3 333
  • 文/蒙蒙 一瘦材、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧仿畸,春花似錦食棕、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 32,285評論 0 24
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至千埃,卻和暖如春憔儿,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背放可。 一陣腳步聲響...
    開封第一講書人閱讀 33,399評論 1 272
  • 我被黑心中介騙來泰國打工谒臼, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人耀里。 一個月前我還...
    沈念sama閱讀 48,837評論 3 376
  • 正文 我出身青樓蜈缤,卻偏偏與公主長得像,于是被迫代替她去往敵國和親冯挎。 傳聞我的和親對象是個殘疾皇子底哥,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 45,455評論 2 359

推薦閱讀更多精彩內(nèi)容