dyld
dyld(the dynamic link editor)是蘋果的動(dòng)態(tài)鏈接器郁油,是蘋果操作系統(tǒng)一個(gè)重要組成部分径筏,在系統(tǒng)內(nèi)核做好程序準(zhǔn)備工作之后腻扇,交由dyld負(fù)責(zé)余下的工作睛廊。
dyld加載過(guò)程分析
我們都知道程序的入口是main()函數(shù),因此我們?cè)诔绦虻膍ain()函數(shù)中打斷點(diǎn):
結(jié)果發(fā)現(xiàn)只有一個(gè)start函數(shù),通過(guò)lldb指令(bt,up)查看,也只能知道與libdyld.dylib有關(guān),但具體的啥也沒有旭咽。
于是我們嘗試在類的load()方法中打斷點(diǎn):
看到有一系列函數(shù)調(diào)用棧,點(diǎn)擊第一個(gè)函數(shù)_dyld_start:
查看匯編,發(fā)現(xiàn)是由dyldbootstrap::start(macho_header const, int, char const, long, macho_header const, unsigned long*)方法開始的贞奋。我們從該方法進(jìn)行dyld的源碼分析。
從源碼中看到,dyldbootstrap::start主要做了根據(jù)滑塊算出偏移地址(ASLR),rebase dyld,消息初始化,棧溢出保護(hù), 最后調(diào)用了_main函數(shù),整個(gè)app啟動(dòng)的關(guān)鍵函數(shù)就是這個(gè)_main()函數(shù)穷绵。
if (dyld3::kdebug_trace_dyld_enabled(DBG_DYLD_TIMING_LAUNCH_EXECUTABLE)) {
launchTraceID = dyld3::kdebug_trace_dyld_duration_start(DBG_DYLD_TIMING_LAUNCH_EXECUTABLE, (uint64_t)mainExecutableMH, 0, 0);
}
// Grab the cdHash of the main executable from the environment
//1.配置相關(guān)環(huán)境操作
uint8_t mainExecutableCDHashBuffer[20];
const uint8_t* mainExecutableCDHash = nullptr;//主程序的哈希
if ( hexToBytes(_simple_getenv(apple, "executable_cdhash"), 40, mainExecutableCDHashBuffer) )
mainExecutableCDHash = mainExecutableCDHashBuffer;
// Trace dyld's load
notifyKernelAboutImage((macho_header*)&__dso_handle, _simple_getenv(apple, "dyld_file"));
#if !TARGET_IPHONE_SIMULATOR
// Trace the main executable's load
notifyKernelAboutImage(mainExecutableMH, _simple_getenv(apple, "executable_file"));
#endif
uintptr_t result = 0;
sMainExecutableMachHeader = mainExecutableMH;//主程序MarchO的頭
sMainExecutableSlide = mainExecutableSlide;//拿到主程序的slider,用于做重定向
#if __MAC_OS_X_VERSION_MIN_REQUIRED
// if this is host dyld, check to see if iOS simulator is being run
const char* rootPath = _simple_getenv(envp, "DYLD_ROOT_PATH");
if ( (rootPath != NULL) ) {
// look to see if simulator has its own dyld
char simDyldPath[PATH_MAX];
strlcpy(simDyldPath, rootPath, PATH_MAX);
strlcat(simDyldPath, "/usr/lib/dyld_sim", PATH_MAX);
int fd = my_open(simDyldPath, O_RDONLY, 0);
if ( fd != -1 ) {
const char* errMessage = useSimulatorDyld(fd, mainExecutableMH, simDyldPath, argc, argv, envp, apple, startGlue, &result);
if ( errMessage != NULL )
halt(errMessage);
return result;
}
}
#endif
CRSetCrashLogMessage("dyld: launch started");
setContext(mainExecutableMH, argc, argv, envp, apple);//設(shè)置上下文(函數(shù)的參數(shù),標(biāo)識(shí)信息)
// Pickup the pointer to the exec path.
sExecPath = _simple_getenv(apple, "executable_path");
// <rdar://problem/13868260> Remove interim apple[0] transition code from dyld
if (!sExecPath) sExecPath = apple[0];
if ( sExecPath[0] != '/' ) {
// have relative path, use cwd to make absolute
char cwdbuff[MAXPATHLEN];
if ( getcwd(cwdbuff, MAXPATHLEN) != NULL ) {
// maybe use static buffer to avoid calling malloc so early...
char* s = new char[strlen(cwdbuff) + strlen(sExecPath) + 2];
strcpy(s, cwdbuff);
strcat(s, "/");
strcat(s, sExecPath);
sExecPath = s;
}
}
// Remember short name of process for later logging
sExecShortName = ::strrchr(sExecPath, '/');
if ( sExecShortName != NULL )
++sExecShortName;
else
sExecShortName = sExecPath;
configureProcessRestrictions(mainExecutableMH);//配置進(jìn)程相關(guān)信息轿塔,進(jìn)程是否受限
#if __MAC_OS_X_VERSION_MIN_REQUIRED
if ( !gLinkContext.allowEnvVarsPrint && !gLinkContext.allowEnvVarsPath && !gLinkContext.allowEnvVarsSharedCache ) {
pruneEnvironmentVariables(envp, &apple);
// set again because envp and apple may have changed or moved
setContext(mainExecutableMH, argc, argv, envp, apple);
}
else
#endif
{
checkEnvironmentVariables(envp); //檢測(cè)環(huán)境變量
defaultUninitializedFallbackPaths(envp);
}
#if __MAC_OS_X_VERSION_MIN_REQUIRED
if ( ((dyld3::MachOFile*)mainExecutableMH)->supportsPlatform(dyld3::Platform::iOSMac)
&& !((dyld3::MachOFile*)mainExecutableMH)->supportsPlatform(dyld3::Platform::macOS)) {
gLinkContext.rootPaths = parseColonList("/System/iOSSupport", NULL);
gLinkContext.marzipan = true;
if ( sEnv.DYLD_FALLBACK_LIBRARY_PATH == sLibraryFallbackPaths )
sEnv.DYLD_FALLBACK_LIBRARY_PATH = sRestrictedLibraryFallbackPaths;
if ( sEnv.DYLD_FALLBACK_FRAMEWORK_PATH == sFrameworkFallbackPaths )
sEnv.DYLD_FALLBACK_FRAMEWORK_PATH = sRestrictedFrameworkFallbackPaths;
}
#endif
if ( sEnv.DYLD_PRINT_OPTS )
printOptions(argv);
if ( sEnv.DYLD_PRINT_ENV )
printEnvironmentVariables(envp);
getHostInfo(mainExecutableMH, mainExecutableSlide);//獲取相關(guān)程序架構(gòu),到這里整個(gè)環(huán)境配置完成。
源碼中分析得,_main函數(shù)開始主要是配置相關(guān)環(huán)境, 包括對(duì)主程序哈希,保存主程序MarchO的頭,保存主slider(用于做重定向),設(shè)置上下文,配置進(jìn)程相關(guān)信息(進(jìn)程是否受限),檢測(cè)環(huán)境變量,獲取相關(guān)程序架構(gòu)。
這里補(bǔ)充一下:
if ( sEnv.DYLD_PRINT_OPTS )
printOptions(argv);
if ( sEnv.DYLD_PRINT_ENV )
printEnvironmentVariables(envp);
DYLD_PRINT_OPTS以及DYLD_PRINT_ENV編譯的環(huán)境變量是可以在Xcode中配置的窖梁。
配置后,在程序的啟動(dòng)過(guò)程中會(huì)輸出啟動(dòng)的相關(guān)信息:
_main函數(shù)中配置完環(huán)境變量后,接下來(lái)開始加載共享緩存庫(kù)。
// load shared cache
checkSharedRegionDisable((dyld3::MachOLoaded*)mainExecutableMH, mainExecutableSlide);
調(diào)用函數(shù)檢查共享緩存是否被禁用,進(jìn)入checkSharedRegionDisable函數(shù),
static void checkSharedRegionDisable(const dyld3::MachOLoaded* mainExecutableMH, uintptr_t mainExecutableSlide)
{
#if __MAC_OS_X_VERSION_MIN_REQUIRED
// if main executable has segments that overlap the shared region,
// then disable using the shared region
if ( mainExecutableMH->intersectsRange(SHARED_REGION_BASE, SHARED_REGION_SIZE) ) {
gLinkContext.sharedRegionMode = ImageLoader::kDontUseSharedRegion;
if ( gLinkContext.verboseMapping )
dyld::warn("disabling shared region because main executable overlaps\n");
}
#if __i386__
if ( !gLinkContext.allowEnvVarsPath ) {
// <rdar://problem/15280847> use private or no shared region for suid processes
gLinkContext.sharedRegionMode = ImageLoader::kUsePrivateSharedRegion;
}
#endif
#endif
// iOS cannot run without shared region
}
iOS必須開啟共享緩存庫(kù)才能運(yùn)行舞萄。
檢查共享緩存庫(kù)開啟后,開始調(diào)用mapSharedCache()函數(shù)加載共享緩存庫(kù),mapSharedCache()函數(shù)中又調(diào)用loadDyldCache()函數(shù),
bool loadDyldCache(const SharedCacheOptions& options, SharedCacheLoadInfo* results)
{
results->loadAddress = 0;
results->slide = 0;
results->errorMessage = nullptr;
#if TARGET_IPHONE_SIMULATOR
// simulator only supports mmap()ing cache privately into process
return mapCachePrivate(options, results);
#else
if ( options.forcePrivate ) {
// mmap cache into this process only
return mapCachePrivate(options, results);
}
else {
// fast path: when cache is already mapped into shared region
bool hasError = false;
if ( reuseExistingCache(options, results) ) {
hasError = (results->errorMessage != nullptr);
} else {
// slow path: this is first process to load cache
hasError = mapCacheSystemWide(options, results);
}
return hasError;
}
#endif
}
loadDyldCache()函數(shù)中,有三種情況,第一種僅加載到當(dāng)前進(jìn)程,第二種是已經(jīng)加載過(guò)了,不需要做任何處理,第三種是第一次加載,調(diào)用mapCacheSystemWide加載。
加載完共享緩存庫(kù)之后,接下來(lái)開始加載主程序mach-O。
sMainExecutable = instantiateFromLoadedImage(mainExecutableMH, mainExecutableSlide, sExecPath);
_main函數(shù)中調(diào)用instantiateFromLoadedImage函數(shù)加載Match-O,進(jìn)入instantiateFromLoadedImage函數(shù),
static ImageLoaderMachO* instantiateFromLoadedImage(const macho_header* mh, uintptr_t slide, const char* path)
{
// try mach-o loader
if ( isCompatibleMachO((const uint8_t*)mh, path) ) {
ImageLoader* image = ImageLoaderMachO::instantiateMainExecutable(mh, slide, path, gLinkContext);
addImage(image);
return (ImageLoaderMachO*)image;
}
throw "main executable not a known format";
}
在instantiateFromLoadedImage調(diào)用isCompatibleMachO函數(shù)檢測(cè)march-o的hader,然后調(diào)用ImageLoaderMachO::instantiateMainExecutable函數(shù),進(jìn)入ImageLoaderMachO::instantiateMainExecutable
// create image for main executable
ImageLoader* ImageLoaderMachO::instantiateMainExecutable(const macho_header* mh, uintptr_t slide, const char* path, const LinkContext& context)
{
//dyld::log("ImageLoader=%ld, ImageLoaderMachO=%ld, ImageLoaderMachOClassic=%ld, ImageLoaderMachOCompressed=%ld\n",
// sizeof(ImageLoader), sizeof(ImageLoaderMachO), sizeof(ImageLoaderMachOClassic), sizeof(ImageLoaderMachOCompressed));
bool compressed;
unsigned int segCount;
unsigned int libCount;
const linkedit_data_command* codeSigCmd;
const encryption_info_command* encryptCmd;
sniffLoadCommands(mh, path, false, &compressed, &segCount, &libCount, context, &codeSigCmd, &encryptCmd);
// instantiate concrete class based on content of load commands
if ( compressed )
return ImageLoaderMachOCompressed::instantiateMainExecutable(mh, slide, path, segCount, libCount, context);
else
#if SUPPORT_CLASSIC_MACHO
return ImageLoaderMachOClassic::instantiateMainExecutable(mh, slide, path, segCount, libCount, context);
#else
throw "missing LC_DYLD_INFO load command";
#endif
}
ImageLoaderMachO::instantiateMainExecutable函數(shù)中調(diào)用sniffLoadCommands為compressed(取值match-O中 dyld_info_only后者dyld_info),
segCount(match-O段的數(shù)量,最大不能大于255個(gè)),
libCount(match-O依賴庫(kù)的個(gè)數(shù),最大不能大于4095個(gè)),
codeSigCmd(代碼簽名),
encryptCmd(簽名信息)
初始化幻梯。
ImageLoader是一個(gè)抽象類,ImageLoaderMachO::instantiateMainExecutable根據(jù)初始化后的值compressed分別調(diào)用不同的初始化方法進(jìn)行初始化。
初始化完成后努释,返回到instantiateFromLoadedImage函數(shù),調(diào)用addImage(image),將主程序添加sAllImages數(shù)組中礼旅。
static void addImage(ImageLoader* image)
{
// add to master list
allImagesLock();
sAllImages.push_back(image);
allImagesUnlock();
// update mapped ranges
uintptr_t lastSegStart = 0;
uintptr_t lastSegEnd = 0;
for(unsigned int i=0, e=image->segmentCount(); i < e; ++i) {
if ( image->segUnaccessible(i) )
continue;
uintptr_t start = image->segActualLoadAddress(i);
uintptr_t end = image->segActualEndAddress(i);
if ( start == lastSegEnd ) {
// two segments are contiguous, just record combined segments
lastSegEnd = end;
}
else {
// non-contiguous segments, record last (if any)
if ( lastSegEnd != 0 )
addMappedRange(image, lastSegStart, lastSegEnd);
lastSegStart = start;
lastSegEnd = end;
}
}
if ( lastSegEnd != 0 )
addMappedRange(image, lastSegStart, lastSegEnd);
if ( gLinkContext.verboseLoading || (sEnv.DYLD_PRINT_LIBRARIES_POST_LAUNCH && (sMainExecutable!=NULL) && sMainExecutable->isLinked()) ) {
dyld::log("dyld: loaded: %s\n", image->getPath());
}
}
這里補(bǔ)充一下,我們經(jīng)常在lldb調(diào)試中輸入image list查看所有鏡像模塊,由于主程序是第一個(gè)添加到sAllImages中的,所以image list查看的模塊第一個(gè)一定是主程序模塊。
主程序加載完畢后,_main中調(diào)用根據(jù)DYLD_INSERT_LIBRARIES個(gè)數(shù)循環(huán)調(diào)用loadInsertedDylib函數(shù),加載插入的動(dòng)態(tài)庫(kù)(越獄的插件就是修改sEnv.DYLD_INSERT_LIBRARIES值洽洁,利用這個(gè)步驟在APP中注入插件,這個(gè)是蘋果預(yù)留給自己用的,必須是root的權(quán)限的用戶才能使用,所以越獄也是獲取了root權(quán)限):
// load any inserted libraries
if ( sEnv.DYLD_INSERT_LIBRARIES != NULL ) {
for (const char* const* lib = sEnv.DYLD_INSERT_LIBRARIES; *lib != NULL; ++lib)
loadInsertedDylib(*lib);
}
// record count of inserted libraries so that a flat search will look at
// inserted libraries, then main, then others.
sInsertedDylibCount = sAllImages.size()-1;
在loadInsertedDylib中調(diào)用load方法加載插入的動(dòng)態(tài)庫(kù),并和主程序一樣加入到sAllImages中。
動(dòng)態(tài)庫(kù)插入完成后,將插入的個(gè)數(shù)記錄在sInsertedDylibCount中菲嘴。
link(sMainExecutable, sEnv.DYLD_BIND_AT_LAUNCH, true, ImageLoader::RPathChain(NULL, NULL), -1);
然后開始調(diào)用link鏈接主程序饿自,進(jìn)入link函數(shù)中:
void ImageLoader::link(const LinkContext& context, bool forceLazysBound, bool preflightOnly, bool neverUnload, const RPathChain& loaderRPaths, const char* imagePath)
{
//dyld::log("ImageLoader::link(%s) refCount=%d, neverUnload=%d\n", imagePath, fDlopenReferenceCount, fNeverUnload);
// clear error strings
(*context.setErrorStrings)(0, NULL, NULL, NULL);
uint64_t t0 = mach_absolute_time();
this->recursiveLoadLibraries(context, preflightOnly, loaderRPaths, imagePath);
//在鏈接的時(shí)候,不僅僅是對(duì)主程序進(jìn)行鏈接,還有很多依賴庫(kù)也需要進(jìn)行鏈接,所以首先循環(huán)加載依賴庫(kù)
context.notifyBatch(dyld_image_state_dependents_mapped, preflightOnly);
// we only do the loading step for preflights
if ( preflightOnly )
return;
uint64_t t1 = mach_absolute_time();
context.clearAllDepths();
this->recursiveUpdateDepth(context.imageCount());//遞歸依賴層級(jí)
__block uint64_t t2, t3, t4, t5;
{
dyld3::ScopedTimer(DBG_DYLD_TIMING_APPLY_FIXUPS, 0, 0, 0);
t2 = mach_absolute_time();
this->recursiveRebase(context); //必須對(duì)主程序和依賴庫(kù)做重定位rebase(由于ASLR的存在)
context.notifyBatch(dyld_image_state_rebased, false);
t3 = mach_absolute_time();
if ( !context.linkingMainExecutable ) //符號(hào)綁定
this->recursiveBindWithAccounting(context, forceLazysBound, neverUnload);
t4 = mach_absolute_time();
if ( !context.linkingMainExecutable )
this->weakBind(context); //弱綁定
t5 = mach_absolute_time();
}
if ( !context.linkingMainExecutable )
context.notifyBatch(dyld_image_state_bound, false);
uint64_t t6 = mach_absolute_time();
std::vector<DOFInfo> dofs;
this->recursiveGetDOFSections(context, dofs); //注冊(cè)GOF
context.registerDOFs(dofs); //注冊(cè)GOF
uint64_t t7 = mach_absolute_time();
// interpose any dynamically loaded images
if ( !context.linkingMainExecutable && (fgInterposingTuples.size() != 0) ) {
dyld3::ScopedTimer timer(DBG_DYLD_TIMING_APPLY_INTERPOSING, 0, 0, 0);
this->recursiveApplyInterposing(context);
}
// clear error strings
(*context.setErrorStrings)(0, NULL, NULL, NULL);
fgTotalLoadLibrariesTime += t1 - t0;
fgTotalRebaseTime += t3 - t2;
fgTotalBindTime += t4 - t3;
fgTotalWeakBindTime += t5 - t4;
fgTotalDOF += t7 - t6;
// done with initial dylib loads
fgNextPIEDylibAddress = 0;
}
link函數(shù)主要做了循環(huán)加載依賴庫(kù),對(duì)主程序和依賴庫(kù)做重定位rebase,符號(hào)綁定,弱綁定,注冊(cè)GOF。
if ( sInsertedDylibCount > 0 ) {
for(unsigned int i=0; i < sInsertedDylibCount; ++i) {
ImageLoader* image = sAllImages[i+1];
link(image, sEnv.DYLD_BIND_AT_LAUNCH, true, ImageLoader::RPathChain(NULL, NULL), -1);
image->setNeverUnloadRecursive();
}
// only INSERTED libraries can interpose
// register interposing info after all inserted libraries are bound so chaining works
for(unsigned int i=0; i < sInsertedDylibCount; ++i) {
ImageLoader* image = sAllImages[i+1];
image->registerInterposing(gLinkContext);
}
}
鏈接主程序完成后,判斷sInsertedDylibCount插入的動(dòng)態(tài)庫(kù)數(shù)量是否大于0,然后循環(huán)調(diào)用link進(jìn)行鏈接插入的動(dòng)態(tài)庫(kù)龄坪。
以上的所有步驟都是在加載Match-O,從initializeMainExecutable函數(shù)開始一步一步調(diào)用主程序代碼昭雌。
// run all initializers
initializeMainExecutable();
結(jié)合之前的函數(shù)調(diào)用棧:
我們知道在initializeMainExecutable中調(diào)用了ImageLoader::runInitializers函數(shù),ImageLoader::runInitializers函數(shù)調(diào)用了ImageLoader::processInitializers,而ImageLoader::processInitializers函數(shù)中調(diào)用了ImageLoader::recursiveInitialization:函數(shù),ImageLoader::recursiveInitialization:中又調(diào)用dyld::notifySingle:這些都可以在源碼中找到。
當(dāng)我們?cè)赿yld::notifySingle:中找load_images時(shí),卻找不到健田。
static void notifySingle(dyld_image_states state, const ImageLoader* image, ImageLoader::InitializerTimingList* timingInfo)
{
//dyld::log("notifySingle(state=%d, image=%s)\n", state, image->getPath());
std::vector<dyld_image_state_change_handler>* handlers = stateToHandlers(state, sSingleHandlers);
if ( handlers != NULL ) {
dyld_image_info info;
info.imageLoadAddress = image->machHeader();
info.imageFilePath = image->getRealPath();
info.imageFileModDate = image->lastModified();
for (std::vector<dyld_image_state_change_handler>::iterator it = handlers->begin(); it != handlers->end(); ++it) {
const char* result = (*it)(state, 1, &info);
if ( (result != NULL) && (state == dyld_image_state_mapped) ) {
//fprintf(stderr, " image rejected by handler=%p\n", *it);
// make copy of thrown string so that later catch clauses can free it
const char* str = strdup(result);
throw str;
}
}
}
if ( state == dyld_image_state_mapped ) {
// <rdar://problem/7008875> Save load addr + UUID for images from outside the shared cache
if ( !image->inSharedCache() ) {
dyld_uuid_info info;
if ( image->getUUID(info.imageUUID) ) {
info.imageLoadAddress = image->machHeader();
addNonSharedCacheImageUUID(info);
}
}
}
if ( (state == dyld_image_state_dependents_initialized) && (sNotifyObjCInit != NULL) && image->notifyObjC() ) {
uint64_t t0 = mach_absolute_time();
dyld3::ScopedTimer timer(DBG_DYLD_TIMING_OBJC_INIT, (uint64_t)image->machHeader(), 0, 0);
(*sNotifyObjCInit)(image->getRealPath(), image->machHeader());
uint64_t t1 = mach_absolute_time();
uint64_t t2 = mach_absolute_time();
uint64_t timeInObjC = t1-t0;
uint64_t emptyTime = (t2-t1)*100;
if ( (timeInObjC > emptyTime) && (timingInfo != NULL) ) {
timingInfo->addTime(image->getShortName(), timeInObjC);
}
}
// mach message csdlc about dynamically unloaded images
if ( image->addFuncNotified() && (state == dyld_image_state_terminated) ) {
notifyKernel(*image, false);
const struct mach_header* loadAddress[] = { image->machHeader() };
const char* loadPath[] = { image->getPath() };
notifyMonitoringDyld(true, 1, loadAddress, loadPath);
}
}
仔細(xì)分析源碼,發(fā)現(xiàn)了一個(gè)函數(shù)指針,(*sNotifyObjCInit)(image->getRealPath(), image->machHeader()); 我們猜測(cè),有可能這個(gè)函數(shù)指針就是load_images函數(shù)烛卧。
為了驗(yàn)證結(jié)果,我們查找一下是哪個(gè)地方對(duì)sNotifyObjCInit這個(gè)函數(shù)指針賦值妓局。
void registerObjCNotifiers(_dyld_objc_notify_mapped mapped, _dyld_objc_notify_init init, _dyld_objc_notify_unmapped unmapped)
{
// record functions to call
sNotifyObjCMapped = mapped;
sNotifyObjCInit = init;
sNotifyObjCUnmapped = unmapped;
// call 'mapped' function with all images mapped so far
try {
notifyBatchPartial(dyld_image_state_bound, true, NULL, false, true);
}
catch (const char* msg) {
// ignore request to abort during registration
}
// <rdar://problem/32209809> call 'init' function on all images already init'ed (below libSystem)
for (std::vector<ImageLoader*>::iterator it=sAllImages.begin(); it != sAllImages.end(); it++) {
ImageLoader* image = *it;
if ( (image->getState() == dyld_image_state_initialized) && image->notifyObjC() ) {
dyld3::ScopedTimer timer(DBG_DYLD_TIMING_OBJC_INIT, (uint64_t)image->machHeader(), 0, 0);
(*sNotifyObjCInit)(image->getRealPath(), image->machHeader());
}
}
}
查找到是在registerObjCNotifiers函數(shù)為函數(shù)sNotifyObjCInit賦值的总放。
追本溯源,我們繼續(xù)查找調(diào)用registerObjCNotifiers函數(shù)的源頭,
void _dyld_objc_notify_register(_dyld_objc_notify_mapped mapped,
_dyld_objc_notify_init init,
_dyld_objc_notify_unmapped unmapped)
{
dyld::registerObjCNotifiers(mapped, init, unmapped);
}
發(fā)現(xiàn)是通過(guò)_dyld_objc_notify_register函數(shù)調(diào)用registerObjCNotifiers的,我們繼續(xù)查找_dyld_objc_notify_register的調(diào)用者,但是在dyld源碼中找不到。
這個(gè)時(shí)候好爬,我們直接在Xcode中下一個(gè)_dyld_objc_notify_register函數(shù)的符號(hào)斷點(diǎn)并運(yùn)行:
發(fā)現(xiàn)_dyld_objc_notify_register是由_objc_init函數(shù)調(diào)用的,這個(gè)時(shí)候我們只能查找objc源碼了局雄。
在objc源碼中:
void _objc_init(void)
{
static bool initialized = false;
if (initialized) return;
initialized = true;
// fixme defer initialization until an objc-using image is found?
environ_init();
tls_init();
static_init();
lock_init();
exception_init();
_dyld_objc_notify_register(&map_images, load_images, unmap_image);
}
我們看到了_dyld_objc_notify_register被調(diào)用了,并且函數(shù)指針是load_images,所以我們的猜測(cè)是正確的。
進(jìn)入load_images:
load_images(const char *path __unused, const struct mach_header *mh)
{
// Return without taking locks if there are no +load methods here.
if (!hasLoadMethods((const headerType *)mh)) return;
recursive_mutex_locker_t lock(loadMethodLock);
// Discover load methods
{
mutex_locker_t lock2(runtimeLock);
prepare_load_methods((const headerType *)mh);
}
// Call +load methods (without runtimeLock - re-entrant)
call_load_methods();
}
在load_images中調(diào)用了call_load_methods函數(shù),繼續(xù)進(jìn)入call_load_methods函數(shù),
**********************************************************************/
void call_load_methods(void)
{
static bool loading = NO;
bool more_categories;
loadMethodLock.assertLocked();
// Re-entrant calls do nothing; the outermost call will finish the job.
if (loading) return;
loading = YES;
void *pool = objc_autoreleasePoolPush();
do {
// 1. Repeatedly call class +loads until there aren't any more
while (loadable_classes_used > 0) {
call_class_loads();
}
// 2. Call category +loads ONCE
more_categories = call_category_loads();
// 3. Run more +loads if there are classes OR more untried categories
} while (loadable_classes_used > 0 || more_categories);
objc_autoreleasePoolPop(pool);
loading = NO;
}
終于在call_load_methods找到了循環(huán)調(diào)用我們程序中所有類的Load方法存炮。
// let objc know we are about to initialize this image
uint64_t t1 = mach_absolute_time();
fState = dyld_image_state_dependents_initialized;
oldState = fState;
context.notifySingle(dyld_image_state_dependents_initialized, this, &timingInfo);
// initialize this image
bool hasInitializers = this->doInitialization(context);
ImageLoader::recursiveInitialization調(diào)用完dyld::notifySingle:后,會(huì)繼續(xù)調(diào)用doInitialization函數(shù),進(jìn)入doInitialization函數(shù)
bool ImageLoaderMachO::doInitialization(const LinkContext& context)
{
CRSetCrashLogMessage2(this->getPath());
// mach-o has -init and static initializers
doImageInit(context);
doModInitFunctions(context);
CRSetCrashLogMessage2(NULL);
return (fHasDashInit || fHasInitializers);
}
doModInitFunctions作用是加載Match-O特有的函數(shù)(C++構(gòu)造函數(shù)等)
下面我們來(lái)看一個(gè)實(shí)例:
當(dāng)我們建立一個(gè)空工程,沒有寫任何代碼,編譯后的mach-o如下:
當(dāng)我們?cè)趍ain函數(shù)中加入如下代碼:
#import <UIKit/UIKit.h>
#import "AppDelegate.h"
__attribute__((constructor)) void func1(){
printf("func1來(lái)了");
}
__attribute__((constructor)) void func2(){
printf("func2來(lái)了");
}
int main(int argc, char * argv[]) {
@autoreleasepool {
return UIApplicationMain(argc, argv, nil, NSStringFromClass([AppDelegate class]));
}
}
編譯后的mach-o如下:
在MatchO文件DATA段_la_symbol_ptr和_objc_classlist多了_mod_init_func組炬搭。doModInitFunctions加載的就是_mod_init_func中數(shù)據(jù)蜈漓。
initializeMainExecutable(); 執(zhí)行完后,dyld開始找主程序的入口函數(shù)(MatchO中的LC_MAIN段)
// find entry point for main executable
result = (uintptr_t)sMainExecutable->getEntryFromLC_MAIN();
找到后,把結(jié)果返回到start中,由start進(jìn)行調(diào)用宫盔。