Pandas - 11.2 datetime

import pandas as pd

ebola = pd.read_csv('data/country_timeseries.csv', parse_dates=[0])
print(ebola.iloc[:5, :5])
'''
        Date  Day  Cases_Guinea  Cases_Liberia  Cases_SierraLeone
0 2015-01-05  289        2776.0            NaN            10030.0
1 2015-01-04  288        2775.0            NaN             9780.0
2 2015-01-03  287        2769.0         8166.0             9722.0
3 2015-01-02  286           NaN         8157.0                NaN
4 2014-12-31  284        2730.0         8115.0             9633.0
'''

基于日期數(shù)據(jù)獲取子集

print(ebola.loc[(ebola.Date.dt.year == 2014) & (ebola.Date.dt.month == 6)].iloc[:,:5])
'''
         Date  Day  Cases_Guinea  Cases_Liberia  Cases_SierraLeone
79 2014-06-30  100         413.0          107.0              239.0
80 2014-06-22   92           NaN           51.0                NaN
81 2014-06-20   90         390.0            NaN              158.0
82 2014-06-19   89           NaN           41.0                NaN
83 2014-06-18   88         390.0            NaN              136.0
84 2014-06-17   87           NaN            NaN               97.0
85 2014-06-16   86         398.0           33.0                NaN
86 2014-06-10   80         351.0           13.0               89.0
87 2014-06-05   75           NaN           13.0               81.0
88 2014-06-03   73         344.0           13.0                NaN
89 2014-06-01   71         328.0           13.0               79.0
'''

DatetimeIndex 對(duì)象

處理包含datetime的數(shù)據(jù)時(shí)逸爵,經(jīng)常把datetime對(duì)象設(shè)置成DataFrame的索引

ebola.index = ebola['Date']
print(ebola.index)
'''
DatetimeIndex(['2015-01-05', '2015-01-04', '2015-01-03', '2015-01-02',
               '2014-12-31', '2014-12-28', '2014-12-27', '2014-12-24',
               '2014-12-21', '2014-12-20',
               ...
               '2014-04-04', '2014-04-01', '2014-03-31', '2014-03-29',
               '2014-03-28', '2014-03-27', '2014-03-26', '2014-03-25',
               '2014-03-24', '2014-03-22'],
              dtype='datetime64[ns]', name='Date', length=122, freq=None)
'''

# 指定年份抽取行數(shù)據(jù)
print(ebola['2015'].iloc[:,:5])
'''
                 Date  Day  Cases_Guinea  Cases_Liberia  Cases_SierraLeone
Date                                                                      
2015-01-05 2015-01-05  289        2776.0            NaN            10030.0
2015-01-04 2015-01-04  288        2775.0            NaN             9780.0
2015-01-03 2015-01-03  287        2769.0         8166.0             9722.0
2015-01-02 2015-01-02  286           NaN         8157.0                NaN
'''

# 指定年份月份抽取數(shù)據(jù)
print(ebola['2014-06'].iloc[:,:5])
'''
                 Date  Day  Cases_Guinea  Cases_Liberia  Cases_SierraLeone
Date                                                                      
2014-06-30 2014-06-30  100         413.0          107.0              239.0
2014-06-22 2014-06-22   92           NaN           51.0                NaN
2014-06-20 2014-06-20   90         390.0            NaN              158.0
2014-06-19 2014-06-19   89           NaN           41.0                NaN
2014-06-18 2014-06-18   88         390.0            NaN              136.0
2014-06-17 2014-06-17   87           NaN            NaN               97.0
2014-06-16 2014-06-16   86         398.0           33.0                NaN
2014-06-10 2014-06-10   80         351.0           13.0               89.0
2014-06-05 2014-06-05   75           NaN           13.0               81.0
2014-06-03 2014-06-03   73         344.0           13.0                NaN
2014-06-01 2014-06-01   71         328.0           13.0               79.0
'''

TimedeltaIndex 對(duì)象

用日期運(yùn)算的結(jié)果作為index后荡陷,可以直接用TimedeltaIndex對(duì)象作為索引拍屑,但是必須要注意index順序,從上到下场刑。

ebola['outbreak_d'] = ebola['Date'] - ebola['Date'].min()

ebola.index = ebola['outbreak_d']

print(ebola.index)
'''
TimedeltaIndex(['289 days', '288 days', '287 days', '286 days', '284 days',
                '281 days', '280 days', '277 days', '274 days', '273 days',
                ...
                 '13 days',  '10 days',   '9 days',   '7 days',   '6 days',
                  '5 days',   '4 days',   '3 days',   '2 days',   '0 days'],
               dtype='timedelta64[ns]', name='outbreak_d', length=122, freq=None)
'''

print(ebola.iloc[:5, :5])
'''
                 Date  Day  Cases_Guinea  Cases_Liberia  Cases_SierraLeone
outbreak_d                                                                
289 days   2015-01-05  289        2776.0            NaN            10030.0
288 days   2015-01-04  288        2775.0            NaN             9780.0
287 days   2015-01-03  287        2769.0         8166.0             9722.0
286 days   2015-01-02  286           NaN         8157.0                NaN
284 days   2014-12-31  284        2730.0         8115.0             9633.0
'''

print(ebola['289 days': '280 days'].iloc[:, :5])
'''
                 Date  Day  Cases_Guinea  Cases_Liberia  Cases_SierraLeone
outbreak_d                                                                
289 days   2015-01-05  289        2776.0            NaN            10030.0
288 days   2015-01-04  288        2775.0            NaN             9780.0
287 days   2015-01-03  287        2769.0         8166.0             9722.0
286 days   2015-01-02  286           NaN         8157.0                NaN
284 days   2014-12-31  284        2730.0         8115.0             9633.0
281 days   2014-12-28  281        2706.0         8018.0             9446.0
'''

# 索引順序錯(cuò)誤
print(ebola['280 days': '289 days'].iloc[:, :5])
'''
Empty DataFrame
Columns: [Date, Day, Cases_Guinea, Cases_Liberia, Cases_SierraLeone]
Index: []
'''

日期范圍

2015-01-01和2014-03-23的數(shù)據(jù)是缺失的

ebola = pd.read_csv('data/country_timeseries.csv', parse_dates=[0])

print(ebola.iloc[:5, :5])
'''
        Date  Day  Cases_Guinea  Cases_Liberia  Cases_SierraLeone
0 2015-01-05  289        2776.0            NaN            10030.0
1 2015-01-04  288        2775.0            NaN             9780.0
2 2015-01-03  287        2769.0         8166.0             9722.0
3 2015-01-02  286           NaN         8157.0                NaN
4 2014-12-31  284        2730.0         8115.0             9633.0
'''
print(ebola.iloc[-5:, :5])
'''
          Date  Day  Cases_Guinea  Cases_Liberia  Cases_SierraLeone
117 2014-03-27    5         103.0            8.0                6.0
118 2014-03-26    4          86.0            NaN                NaN
119 2014-03-25    3          86.0            NaN                NaN
120 2014-03-24    2          86.0            NaN                NaN
121 2014-03-22    0          49.0            NaN                NaN
'''

創(chuàng)建一個(gè)日期范圍來(lái)為數(shù)據(jù)集重建索引

head_range = pd.date_range(start='2014-12-31', end='2015-01-05')
print(head_range)
'''
DatetimeIndex(['2014-12-31', '2015-01-01', '2015-01-02', '2015-01-03',
               '2015-01-04', '2015-01-05'],
              dtype='datetime64[ns]', freq='D')
'''

在這個(gè)例子中蔽豺,只取前5行數(shù)據(jù),想把head_range設(shè)置為ebola_5的索引,需要先把日期設(shè)置為ebola_5的索引棘利,然后為數(shù)據(jù)重建索引

ebola_5 = ebola.head()
ebola_5.index = ebola_5['Date']
ebola_5.reindex(head_range)
print(ebola_5.iloc[:, :5])
'''
                 Date  Day  Cases_Guinea  Cases_Liberia  Cases_SierraLeone
Date                                                                      
2015-01-05 2015-01-05  289        2776.0            NaN            10030.0
2015-01-04 2015-01-04  288        2775.0            NaN             9780.0
2015-01-03 2015-01-03  287        2769.0         8166.0             9722.0
2015-01-02 2015-01-02  286           NaN         8157.0                NaN
2014-12-31 2014-12-31  284        2730.0         8115.0             9633.0
'''

頻率

在head_range函數(shù)中有一個(gè)參數(shù)freq,其默認(rèn)值為D(代表day)橱野,表示日期范圍內(nèi)的值是逐日遞增的。

print(pd.date_range('2017-01-01', '2017-01-07', freq='B'))
'''
DatetimeIndex(['2017-01-02', '2017-01-03', '2017-01-04', '2017-01-05',
               '2017-01-06'],
              dtype='datetime64[ns]', freq='B')
'''

偏移量

偏移量是在基本頻率上做的一點(diǎn)調(diào)整善玫,例如可以向剛剛創(chuàng)建的工作日范圍添加一個(gè)偏移量水援,這樣就可以隔一個(gè)工作日取一個(gè)工作日。
在基本頻率前加一個(gè)倍數(shù)值就創(chuàng)建出了該偏移量

# 從2017年1月1日這周隔一天取一個(gè)工作日
print(pd.date_range('2017-01-01', '2017-01-07', freq='2B'))
# DatetimeIndex(['2017-01-02', '2017-01-04', '2017-01-06'], dtype='datetime64[ns]', freq='2B')

偏移量可以和其他基本頻率結(jié)合使用

# 每月的第一個(gè)星期五
print(pd.date_range('2017-01-01', '2017-12-31', freq='WOM-1THU'))
'''
DatetimeIndex(['2017-01-05', '2017-02-02', '2017-03-02', '2017-04-06',
               '2017-05-04', '2017-06-01', '2017-07-06', '2017-08-03',
               '2017-09-07', '2017-10-05', '2017-11-02', '2017-12-07'],
              dtype='datetime64[ns]', freq='WOM-1THU')
'''

移動(dòng)

有時(shí)需要更改數(shù)據(jù)的日期茅郎,例如修正數(shù)據(jù)中的某個(gè)測(cè)量誤差蜗元,或者對(duì)數(shù)據(jù)的開始日期進(jìn)行標(biāo)準(zhǔn)化,以便比較趨勢(shì)只洒。
比如需要比較不同國(guó)家的疫情傳播速度许帐,但是不同國(guó)家爆發(fā)疫情的時(shí)間不同,很難比較各國(guó)疫情的爆發(fā)情況劳坑。

ebola_sub = ebola[['Day', 'Cases_Guinea', 'Cases_Liberia']]
print(ebola_sub.tail(10))
'''
     Day  Cases_Guinea  Cases_Liberia
112   13         143.0           18.0
113   10         127.0            8.0
114    9         122.0            8.0
115    7         112.0            7.0
116    6         112.0            3.0
117    5         103.0            8.0
118    4          86.0            NaN
119    3          86.0            NaN
120    2          86.0            NaN
121    0          49.0            NaN
'''

最好所有的日期都從常用的0天開始毕谴。
(1)由于有些日期沒(méi)有列出來(lái),所以需要為數(shù)據(jù)集的所有日期創(chuàng)建一個(gè)日期范圍距芬。
(2)需要計(jì)算數(shù)據(jù)集中最早日期和每列最早有效日期(非NaN)之間的插值涝开。
(3)然后根據(jù)計(jì)算結(jié)果移動(dòng)每列。
開始之前框仔,首先讀取ebola數(shù)據(jù)集的一個(gè)副本舀武。同時(shí)把Date解析為date對(duì)象,并把日期指派給index离斩。本例中會(huì)解析日期并直接設(shè)置為索引银舱。

ebola = pd.read_csv('data/country_timeseries.csv', index_col='Date', parse_dates=['Date'])
print(ebola.head().iloc[:, :4])
'''
            Day  Cases_Guinea  Cases_Liberia  Cases_SierraLeone
Date                                                           
2015-01-05  289        2776.0            NaN            10030.0
2015-01-04  288        2775.0            NaN             9780.0
2015-01-03  287        2769.0         8166.0             9722.0
2015-01-02  286           NaN         8157.0                NaN
2014-12-31  284        2730.0         8115.0             9633.0
'''
new_idx = pd.date_range(ebola.index.min(), ebola.index.max())
print(new_idx)
'''
DatetimeIndex(['2014-03-22', '2014-03-23', '2014-03-24', '2014-03-25',
               '2014-03-26', '2014-03-27', '2014-03-28', '2014-03-29',
               '2014-03-30', '2014-03-31',
               ...
               '2014-12-27', '2014-12-28', '2014-12-29', '2014-12-30',
               '2014-12-31', '2015-01-01', '2015-01-02', '2015-01-03',
               '2015-01-04', '2015-01-05'],
              dtype='datetime64[ns]', length=290, freq='D')
'''
new_idx = reversed(new_idx)
ebola = ebola.reindex(new_idx)
print(ebola.head().iloc[:, :4])
'''

              Day  Cases_Guinea  Cases_Liberia  Cases_SierraLeone
Date                                                             
2015-01-05  289.0        2776.0            NaN            10030.0
2015-01-04  288.0        2775.0            NaN             9780.0
2015-01-03  287.0        2769.0         8166.0             9722.0
2015-01-02  286.0           NaN         8157.0                NaN
2015-01-01    NaN           NaN            NaN                NaN
'''
# 每列最早有效日期,Series的last_valid_index方法返回最后一個(gè)非缺失值或非空值的索引值
# 類似的還有first_valid_index(返回第一個(gè)非缺失值或非空值的索引值)
last_valid = ebola.apply(pd.Series.last_valid_index)
print(last_valid)
'''
Day                   2014-03-22
Cases_Guinea          2014-03-22
Cases_Liberia         2014-03-27
Cases_SierraLeone     2014-03-27
Cases_Nigeria         2014-07-23
Cases_Senegal         2014-08-31
Cases_UnitedStates    2014-10-01
Cases_Spain           2014-10-08
Cases_Mali            2014-10-22
Deaths_Guinea         2014-03-22
Deaths_Liberia        2014-03-27
Deaths_SierraLeone    2014-03-27
Deaths_Nigeria        2014-07-23
Deaths_Senegal        2014-09-07
Deaths_UnitedStates   2014-10-01
Deaths_Spain          2014-10-08
Deaths_Mali           2014-10-22
dtype: datetime64[ns]
'''
# 獲取數(shù)據(jù)中最早的日期
earliest_date = ebola.index.min()
print(earliest_date)
# 2014-03-22 00:00:00
# 計(jì)算最早日期和每列最早有效期日的差值
shift_values = last_valid - earliest_date
print(shift_values)
'''
Day                     0 days
Cases_Guinea            0 days
Cases_Liberia           5 days
Cases_SierraLeone       5 days
Cases_Nigeria         123 days
Cases_Senegal         162 days
Cases_UnitedStates    193 days
Cases_Spain           200 days
Cases_Mali            214 days
Deaths_Guinea           0 days
Deaths_Liberia          5 days
Deaths_SierraLeone      5 days
Deaths_Nigeria        123 days
Deaths_Senegal        169 days
Deaths_UnitedStates   193 days
Deaths_Spain          200 days
Deaths_Mali           214 days
dtype: timedelta64[ns]
'''
# 歷遍各樂(lè)趣跛梗,根據(jù)shift_values中相應(yīng)的值使用shift方法把列下移寻馏。(shift_values中的數(shù)字都是正數(shù),若是負(fù)數(shù)核偿,會(huì)把值上移)
ebola_dict = {}
for idx, col in enumerate(ebola):
    d = shift_values[idx].days
    shifted = ebola[col].shift(d)
    ebola_dict[col] = shifted

ebola_shift = pd.DataFrame(ebola_dict)
# dict是無(wú)序的诚欠,傳入原來(lái)的ebola的列來(lái)重新排列
ebola_shift = ebola_shift[ebola.columns]

# 每列的最后一行都有值
print(ebola_shift.tail())
'''
            Day  Cases_Guinea  Cases_Liberia  Cases_SierraLeone  \
Date                                                              
2014-03-26  4.0          86.0            8.0                2.0   
2014-03-25  3.0          86.0            NaN                NaN   
2014-03-24  2.0          86.0            7.0                NaN   
2014-03-23  NaN           NaN            3.0                2.0   
2014-03-22  0.0          49.0            8.0                6.0   

            Cases_Nigeria  Cases_Senegal  Cases_UnitedStates  Cases_Spain  \
Date                                                                        
2014-03-26            1.0            NaN                 1.0          1.0   
2014-03-25            NaN            NaN                 NaN          NaN   
2014-03-24            NaN            NaN                 NaN          NaN   
2014-03-23            NaN            NaN                 NaN          NaN   
2014-03-22            0.0            1.0                 1.0          1.0   

            Cases_Mali  Deaths_Guinea  Deaths_Liberia  Deaths_SierraLeone  \
Date                                                                        
2014-03-26         NaN           62.0             4.0                 2.0   
2014-03-25         NaN           60.0             NaN                 NaN   
2014-03-24         NaN           59.0             2.0                 NaN   
2014-03-23         NaN            NaN             3.0                 2.0   
2014-03-22         1.0           29.0             6.0                 5.0   

            Deaths_Nigeria  Deaths_Senegal  Deaths_UnitedStates  Deaths_Spain  \
Date                                                                            
2014-03-26             1.0             NaN                  0.0           1.0   
2014-03-25             NaN             NaN                  NaN           NaN   
2014-03-24             NaN             NaN                  NaN           NaN   
2014-03-23             NaN             NaN                  NaN           NaN   
2014-03-22             0.0             0.0                  0.0           1.0   

            Deaths_Mali  
Date                     
2014-03-26          NaN  
2014-03-25          NaN  
2014-03-24          NaN  
2014-03-23          NaN  
2014-03-22          1.0  
'''

每一行的索引已經(jīng)失效,可以將其刪除,然后指定正確的列轰绵,即日期粉寞。Day不再表示日期爆發(fā)的第一天,而是指特定國(guó)家疫情爆發(fā)的第一天

ebola_shift.index = ebola_shift['Day']
ebola_shift = ebola_shift.drop(['Day'], axis=1)

print(ebola_shift.tail())
'''
     Cases_Guinea  Cases_Liberia  Cases_SierraLeone  Cases_Nigeria  \
Day                                                                  
4.0          86.0            8.0                2.0            1.0   
3.0          86.0            NaN                NaN            NaN   
2.0          86.0            7.0                NaN            NaN   
NaN           NaN            3.0                2.0            NaN   
0.0          49.0            8.0                6.0            0.0   

     Cases_Senegal  Cases_UnitedStates  Cases_Spain  Cases_Mali  \
Day                                                               
4.0            NaN                 1.0          1.0         NaN   
3.0            NaN                 NaN          NaN         NaN   
2.0            NaN                 NaN          NaN         NaN   
NaN            NaN                 NaN          NaN         NaN   
0.0            1.0                 1.0          1.0         1.0   

     Deaths_Guinea  Deaths_Liberia  Deaths_SierraLeone  Deaths_Nigeria  \
Day                                                                      
4.0           62.0             4.0                 2.0             1.0   
3.0           60.0             NaN                 NaN             NaN   
2.0           59.0             2.0                 NaN             NaN   
NaN            NaN             3.0                 2.0             NaN   
0.0           29.0             6.0                 5.0             0.0   

     Deaths_Senegal  Deaths_UnitedStates  Deaths_Spain  Deaths_Mali  
Day                                                                  
4.0             NaN                  0.0           1.0          NaN  
3.0             NaN                  NaN           NaN          NaN  
2.0             NaN                  NaN           NaN          NaN  
NaN             NaN                  NaN           NaN          NaN  
0.0             0.0                  0.0           1.0          1.0  
'''

重采樣

  • 下采樣:從高頻率到低頻率(比如從每天到每月)
  • 上采樣:從低頻率到高頻率(比如從每月到每天)
  • 原樣采樣:采樣頻率不變(比如每月的第一個(gè)星期四到每月的最后一個(gè)星期五)

resample函數(shù)有一個(gè)rule參數(shù)左腔,用于接收偏移量字符串唧垦。

# 下采樣:從每天到每月
# 這里有多個(gè)值,需要把結(jié)果居合起來(lái)
down = ebola.resample('M').mean()
print(down.iloc[:5, :5])
'''
                   Day  Cases_Guinea  Cases_Liberia  Cases_SierraLeone  \
Date                                                                     
2014-03-31    4.500000     94.500000       6.500000           3.333333   
2014-04-30   24.333333    177.818182      24.555556           2.200000   
2014-05-31   51.888889    248.777778      12.555556           7.333333   
2014-06-30   84.636364    373.428571      35.500000         125.571429   
2014-07-31  115.700000    423.000000     212.300000         420.500000   

            Cases_Nigeria  
Date                       
2014-03-31            NaN  
2014-04-30            NaN  
2014-05-31            NaN  
2014-06-30            NaN  
2014-07-31       1.333333
'''
# 這里對(duì)下采樣得到的值進(jìn)行上采樣
# 請(qǐng)注意填充了多少確實(shí)日期
# 使用缺失值進(jìn)行填充
up = down.resample('D').mean()
print(up.iloc[:5, :5])
'''
            Day  Cases_Guinea  Cases_Liberia  Cases_SierraLeone  Cases_Nigeria
Date                                                                          
2014-03-31  4.5          94.5            6.5           3.333333            NaN
2014-04-01  NaN           NaN            NaN                NaN            NaN
2014-04-02  NaN           NaN            NaN                NaN            NaN
2014-04-03  NaN           NaN            NaN                NaN            NaN
2014-04-04  NaN           NaN            NaN                NaN            NaN
'''

時(shí)區(qū)

import pytz
import re

# 在pandas中處理時(shí)區(qū)液样,最簡(jiǎn)單的方法是使用pytz.all_timezones給出的字符串名
regex = re.compile(r'^US')
selected_files = filter(regex.search, pytz.common_timezones)
print(list(selected_files))
# ['US/Alaska', 'US/Arizona', 'US/Central', 'US/Eastern', 'US/Hawaii', 'US/Mountain', 'US/Pacific']

# 指定時(shí)區(qū)
depart = pd.Timestamp('2017-08-29 07:00', tz='US/Eastern')
print(depart)
# 2017-08-29 07:00:00-04:00

# 對(duì)時(shí)區(qū)編碼的另一種方法是調(diào)用‘空’時(shí)間戳的tz_localize方法
arrive = pd.Timestamp('2017-08-29 09:57')
print(arrive)

arrive = arrive.tz_localize('US/Pacific')
print(arrive)
# 2017-08-29 09:57:00-07:00

# 把航班到達(dá)時(shí)間轉(zhuǎn)換回東部時(shí)區(qū)
arrive = arrive.tz_convert('US/Eastern')
print(arrive)
# 2017-08-29 12:57:00-04:00

# 對(duì)兩個(gè)時(shí)間點(diǎn)計(jì)算時(shí)間差业崖,之前的版本需要調(diào)整成同一個(gè)時(shí)區(qū)才可計(jì)算,現(xiàn)在不需要
# duration = arrive.tz_convert('US/Eastern') - depart
duration = arrive - depart
print(duration)
# 0 days 05:57:00
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末蓄愁,一起剝皮案震驚了整個(gè)濱河市双炕,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌撮抓,老刑警劉巖妇斤,帶你破解...
    沈念sama閱讀 206,839評(píng)論 6 482
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場(chǎng)離奇詭異丹拯,居然都是意外死亡站超,警方通過(guò)查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 88,543評(píng)論 2 382
  • 文/潘曉璐 我一進(jìn)店門乖酬,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái)死相,“玉大人,你說(shuō)我怎么就攤上這事咬像∷愦椋” “怎么了?”我有些...
    開封第一講書人閱讀 153,116評(píng)論 0 344
  • 文/不壞的土叔 我叫張陵县昂,是天一觀的道長(zhǎng)肮柜。 經(jīng)常有香客問(wèn)我,道長(zhǎng)倒彰,這世上最難降的妖魔是什么审洞? 我笑而不...
    開封第一講書人閱讀 55,371評(píng)論 1 279
  • 正文 為了忘掉前任,我火速辦了婚禮待讳,結(jié)果婚禮上芒澜,老公的妹妹穿的比我還像新娘。我一直安慰自己创淡,他們只是感情好痴晦,可當(dāng)我...
    茶點(diǎn)故事閱讀 64,384評(píng)論 5 374
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著辩昆,像睡著了一般阅酪。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 49,111評(píng)論 1 285
  • 那天术辐,我揣著相機(jī)與錄音砚尽,去河邊找鬼。 笑死辉词,一個(gè)胖子當(dāng)著我的面吹牛必孤,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播瑞躺,決...
    沈念sama閱讀 38,416評(píng)論 3 400
  • 文/蒼蘭香墨 我猛地睜開眼敷搪,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來(lái)了幢哨?” 一聲冷哼從身側(cè)響起赡勘,我...
    開封第一講書人閱讀 37,053評(píng)論 0 259
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎捞镰,沒(méi)想到半個(gè)月后闸与,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 43,558評(píng)論 1 300
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡岸售,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 36,007評(píng)論 2 325
  • 正文 我和宋清朗相戀三年践樱,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片凸丸。...
    茶點(diǎn)故事閱讀 38,117評(píng)論 1 334
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡拷邢,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出屎慢,到底是詐尸還是另有隱情瞭稼,我是刑警寧澤,帶...
    沈念sama閱讀 33,756評(píng)論 4 324
  • 正文 年R本政府宣布抛人,位于F島的核電站弛姜,受9級(jí)特大地震影響脐瑰,放射性物質(zhì)發(fā)生泄漏妖枚。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 39,324評(píng)論 3 307
  • 文/蒙蒙 一苍在、第九天 我趴在偏房一處隱蔽的房頂上張望绝页。 院中可真熱鬧,春花似錦寂恬、人聲如沸续誉。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,315評(píng)論 0 19
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)酷鸦。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間臼隔,已是汗流浹背嘹裂。 一陣腳步聲響...
    開封第一講書人閱讀 31,539評(píng)論 1 262
  • 我被黑心中介騙來(lái)泰國(guó)打工, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留摔握,地道東北人寄狼。 一個(gè)月前我還...
    沈念sama閱讀 45,578評(píng)論 2 355
  • 正文 我出身青樓,卻偏偏與公主長(zhǎng)得像氨淌,于是被迫代替她去往敵國(guó)和親泊愧。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 42,877評(píng)論 2 345

推薦閱讀更多精彩內(nèi)容