單變量線(xiàn)性回歸(二)

梯度下降(Gradient Descent)

我們將使用梯度下降算法來(lái)求出使得代價(jià)函數(shù)J(θ0, θ1)值最小的參數(shù)θ的值公条。

梯度下降算法的基本思想:首先我們隨機(jī)選擇一個(gè)參數(shù)的組合(θ0, θ1, ... , θn)拇囊,計(jì)算代價(jià)函數(shù),然后我們尋找下一個(gè)能讓代價(jià)函數(shù)值最小的參數(shù)組合靶橱,且一直這樣尋找下去直至找到一個(gè)局部最小值寥袭。為什么將這個(gè)最小值稱(chēng)為局部最小值?因?yàn)楣匕裕覀冊(cè)趯ふ疫^(guò)程中并沒(méi)有嘗試尋找所有的參數(shù)組合传黄,所以我們不能確定這個(gè)最小值為全局最小值。

梯度下降算法的公式為:

其中:

因此队寇,我們可將表達(dá)式改寫(xiě)為:

其中α是學(xué)習(xí)率(Learning Rate)尝江,α越大則代價(jià)函數(shù)值下降得越快;反之英上,代價(jià)函數(shù)值下降得越慢炭序。表達(dá)式中 “:=” 這個(gè)符號(hào)表示賦值啤覆。

注:我們?cè)诟聟?shù)θ的值時(shí)要做到同步更新,即同時(shí)更新θ0惭聂,θ1的值窗声。

補(bǔ)充筆記
Gradient Descent

So we have our hypothesis function and we have a way of measuring how well it fits into the data. Now we need to estimate the parameters in the hypothesis function. That's where gradient descent comes in.

Imagine that we graph our hypothesis function based on its fields θ0 and θ1 (actually we are graphing the cost function of the parameter estimates). We are not graphing x and y itself, but the parameter range of our hypothesis function and the cost resulting from selecting a particular set of parameters.

We put θ0 on the x axis and θ1 on the y axis, with the cost function on the vertical z axis. The points on our graph will be the result of the cost function using our hypothesis with those specific theta parameters. The graph below depicts such a setup.

We will know that we have succeeded when our cost function is at the very bottom of the pits in our graph, i.e. when its value is the minimum. The red arrows show the minimum points in the graph.

The way we do this is by taking the derivative (the tangential line to a function) of our cost function. The slope of the tangent is the derivative at that point and it will give us a direction to move towards. We make steps down the cost function in the direction with the steepest descent. The size of each step is determined by the parameter α, which is called the learning rate.

The gradient descent algorithm is:

repeat until convergence:

where
j = 0, 1 represents the feature index number.

At each iteration j, one should simultaneously update the parameters θ1, θ2, ... , θn. Updating a specific parameter prior to calculating another one on the j(th) iteration would yield to a wrong implementation.

Gradient Descent Intuition

We explored the scenario where we used one parameter θ1 and its cost function to implement a gradient. Our formula for a single parameter was:

repeat until convergence:

On a side note, we should adjust our parameter α to ensure that the gradient descent algorithm converges in a reasonable time. Failure to converge or too much time to obtain the minimum value imply that our step size is wrong.

How does gradient descent converge with a fixed step size α?

Gradient Descent For Linear Regression

When specifically applied to the case of linear regression, a new form of the gradient descent equation can be derived. We can substitute our actual cost function and our actual hypothesis function and modify equation to:

where m is the size of the training set θ0 a constant that will be changing simultaneously with θ1 and xi, yi are values of the given training set (data).

The point of all this is that if we start with a guess for our hypothesis and then repeatedly apply these gradient descent equations, our hypothesis will become more and more accurate.

So, this is simply gradient descent on the original cost function J. This method looks at every example in the entire training set on every step, and is called batch gradient descent. Not that, while gradient descent can be susceptible to local minimum in general, the optimization problem we have posed here for linear regression has only one global, and no other local, optima; thus gradient descent always converges (assuming the learning rate α is not too large) to the global minimum. Indeed, J is a convex quadratic function. Here is an example of gradient descent as it is run to minimize a quadratic function.

The ellipses shown above are the contours of a quadratic function. Also shown is the trajectory taken by gradient descent, which was initialized at (48, 30). The x's in the figure (joined by straight lines) mark the successive values of θ that gradient descent went through as it converged to its minimum.

注:國(guó)外與國(guó)內(nèi)關(guān)于凹凸函數(shù)的定義是反的。

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末辜纲,一起剝皮案震驚了整個(gè)濱河市笨觅,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌耕腾,老刑警劉巖见剩,帶你破解...
    沈念sama閱讀 206,126評(píng)論 6 481
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場(chǎng)離奇詭異扫俺,居然都是意外死亡弧械,警方通過(guò)查閱死者的電腦和手機(jī)剧蹂,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 88,254評(píng)論 2 382
  • 文/潘曉璐 我一進(jìn)店門(mén),熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái),“玉大人热鞍,你說(shuō)我怎么就攤上這事速兔⊙憔海” “怎么了秒咐?”我有些...
    開(kāi)封第一講書(shū)人閱讀 152,445評(píng)論 0 341
  • 文/不壞的土叔 我叫張陵,是天一觀(guān)的道長(zhǎng)盈简。 經(jīng)常有香客問(wèn)我凑耻,道長(zhǎng),這世上最難降的妖魔是什么柠贤? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 55,185評(píng)論 1 278
  • 正文 為了忘掉前任拳话,我火速辦了婚禮,結(jié)果婚禮上种吸,老公的妹妹穿的比我還像新娘弃衍。我一直安慰自己,他們只是感情好坚俗,可當(dāng)我...
    茶點(diǎn)故事閱讀 64,178評(píng)論 5 371
  • 文/花漫 我一把揭開(kāi)白布镜盯。 她就那樣靜靜地躺著,像睡著了一般猖败。 火紅的嫁衣襯著肌膚如雪速缆。 梳的紋絲不亂的頭發(fā)上,一...
    開(kāi)封第一講書(shū)人閱讀 48,970評(píng)論 1 284
  • 那天恩闻,我揣著相機(jī)與錄音艺糜,去河邊找鬼。 笑死,一個(gè)胖子當(dāng)著我的面吹牛破停,可吹牛的內(nèi)容都是我干的翅楼。 我是一名探鬼主播,決...
    沈念sama閱讀 38,276評(píng)論 3 399
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼真慢,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼毅臊!你這毒婦竟也來(lái)了?” 一聲冷哼從身側(cè)響起黑界,我...
    開(kāi)封第一講書(shū)人閱讀 36,927評(píng)論 0 259
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤管嬉,失蹤者是張志新(化名)和其女友劉穎,沒(méi)想到半個(gè)月后朗鸠,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體蚯撩,經(jīng)...
    沈念sama閱讀 43,400評(píng)論 1 300
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 35,883評(píng)論 2 323
  • 正文 我和宋清朗相戀三年烛占,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了胎挎。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 37,997評(píng)論 1 333
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡扰楼,死狀恐怖呀癣,靈堂內(nèi)的尸體忽然破棺而出美浦,到底是詐尸還是另有隱情弦赖,我是刑警寧澤,帶...
    沈念sama閱讀 33,646評(píng)論 4 322
  • 正文 年R本政府宣布浦辨,位于F島的核電站蹬竖,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏流酬。R本人自食惡果不足惜币厕,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 39,213評(píng)論 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望芽腾。 院中可真熱鬧旦装,春花似錦、人聲如沸摊滔。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 30,204評(píng)論 0 19
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)艰躺。三九已至呻袭,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間腺兴,已是汗流浹背左电。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 31,423評(píng)論 1 260
  • 我被黑心中介騙來(lái)泰國(guó)打工, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人篓足。 一個(gè)月前我還...
    沈念sama閱讀 45,423評(píng)論 2 352
  • 正文 我出身青樓段誊,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國(guó)和親纷纫。 傳聞我的和親對(duì)象是個(gè)殘疾皇子枕扫,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 42,722評(píng)論 2 345

推薦閱讀更多精彩內(nèi)容