英語流利說 Level 7 Unit2 Part3 - Machine intelligence makes human morals more important (2)

Video 3

I have a friend who developed such computational systems to predict the likelihood of clinical or postpartum depression from social media data. The results are impressive. Her system can predict the likelihood of depression months before the onset of any symptoms -- months before. No symptoms, there's prediction. She hopes it will be used for early intervention. Great! But now put this in the context of hiring.

So at this human resources managers conference, I approached a high-level manager in a very large company, and I said to her, "Look, what if, unbeknownst to you, your system is weeding out people with high future likelihood of depression? They're not depressed now, just maybe in the future, more likely. What if it's weeding out women more likely to be pregnant in the next year or two but aren't pregnant now? What if it's hiring aggressive people because that's your workplace culture?" You can't tell this by looking at gender breakdowns. Those may be balanced. And since this is machine learning, not traditional coding, there is no variable there labeled "higher risk of depression," "higher risk of pregnancy," "aggressive guy scale." Not only do you not know what your system is selecting on, you don't even know where to begin to look. It's a black box. It has predictive power, but you don't understand it.

"What safeguards," I asked, "do you have to make sure that your black box isn't doing something shady?" She looked at me as if I had just stepped on 10 puppy tails. She stared at me and she said, "I don't want to hear another word about this." And she turned around and walked away. Mind you - she wasn't rude. It was clearly: what I don't know isn't my problem, go away, death stare.

Look, such a system may even be less biased than human managers in some ways. And it could make monetary sense. But it could also lead to a steady but stealthy shutting outof the job market of people with higher risk of depression. Is this the kind of society we want to build, without even knowing we've done this, because we turned decision-making to machines we don't totally understand?

Another problem is this: these systems are often trained on data generated by our actions, human imprints. Well, they could just be reflecting our biases, and these systems could be picking up on our biases and amplifying them and showing them back to us, while we're telling ourselves, "We're just doing objective, neutral computation."

Researchers found that on Google, women are less likely than men to be shown job ads for high-paying jobs. And searching for African-American names is more likely to bring up ads suggesting criminal history, even when there is none. Such hidden biases and black-box algorithms that researchers uncover sometimes but sometimes we don't know, can have life-altering consequences.

In Wisconsin, a defendant was sentenced to six years in prison for evading the police. You may not know this, but algorithms are increasingly used in parole and sentencing decisions. He wanted to know: How is this score calculated? It's a commercial black box. The company refused to have its algorithm be challenged in open court. But ProPublica, an investigative nonprofit, audited that very algorithm with what public data they could find, and found that its outcomes were biased and its predictive power was dismal, barely better than chance, and it was wrongly labeling black defendants as future criminals at twice the rate of white defendants.

So, consider this case: This woman was late picking up her godsister from a school in Broward County, Florida, running down the street with a friend of hers. They spotted an unlocked kid's bike and a scooter on a porch and foolishly jumped on it. As they were speeding off, a woman came out and said, "Hey! That's my kid's bike!" They dropped it, they walked away, but they were arrested.

She was wrong, she was foolish, but she was also just 18. She had a couple of juvenile misdemeanors. Meanwhile, that man had been arrested for shoplifting in Home Depot -- 85 dollars' worth of stuff, a similar petty crime. But he had two prior armed robbery convictions. But the algorithm scored her as high risk, and not him. Two years later, ProPublica found that she had not reoffended. It was just hard to get a job for her with her record. He, on the other hand, did reoffend and is now serving an eight-year prison term for a later crime. Clearly, we need to audit our black boxes and not have them have this kind of unchecked power.


Video 4

Audits are great and important, but they don't solve all our problems. Take Facebook's powerful news feed algorithm - you know, the one that ranks everything and decides what to show you from all the friends and pages you follow. Should you be shown another baby picture?

A sullen note from an acquaintance? An important but difficult news item? There's no right answer. Facebook optimizes for engagement on the site: likes, shares, comments.

In August of 2014, protests broke out in Ferguson, Missouri, after the killing of an African-American teenager by a white police officer, under murky circumstances. The news of the protests was all over my algorithmically unfiltered Twitter feed, but nowhere on my Facebook. Was it my Facebook friends? I disabled Facebook's algorithm, which is hard because Facebook keeps wanting to make you come under the algorithm's control, and saw that my friends were talking about it. It's just that the algorithm wasn't showing it to me. I researched this and found this was a widespread problem.

The story of Ferguson wasn't algorithm-friendly. It's not "likable." Who's going to click on "like?" It's not even easy to comment on. Without likes and comments, the algorithm was likely showing it to even fewer people, so we didn't get to see this. Instead, that week, Facebook's algorithm highlighted this, which is the ALS Ice Bucket Challenge. Worthy cause; dump ice water, donate to charity, fine. But it was super algorithm-friendly. The machine made this decision for us. A very important but difficult conversation might have been smothered, had Facebook been the only channel.

Now, finally, these systems can also be wrong in ways that don't resemble human systems. Do you guys remember Watson, IBM's machine-intelligence system that wiped the floor with human contestants on Jeopardy? It was a great player. But then, for Final Jeopardy, Watson was asked this question: "Its largest airport is named for a World War II hero, its second-largest for a World War II battle."

Chicago. The two humans got it right. Watson, on the other hand, answered "Toronto" - for a US city category! The impressive system also made an error that a human would never make, a second-grader wouldn't make.

Our machine intelligence can fail in ways that don't fit error patterns of humans, in ways we won't expect and be prepared for. It'd be lousy not to get a job one is qualified for, but it would triple suck if it was because of stack overflow in some subroutine.

In May of 2010, a flash crash on Wall Street fueled by a feedback loop in Wall Street's "sell" algorithm wiped a trillion dollars of value in 36 minutes. I don't even want to think what "error" means in the context of lethal autonomous weapons.

So yes, humans have always made biases. Decision makers and gatekeepers, in courts, in news, in war ... they make mistakes; but that's exactly my point. We cannot escape these difficult questions. We cannot outsource our responsibilities to machines.

Artificial intelligence does not give us a "Get out of ethics free" card.

Data scientist Fred Benenson calls this math-washing. We need the opposite. We need to cultivate algorithm suspicion, scrutiny and investigation. We need to make sure we have algorithmic accountability, auditing and meaningful transparency. We need to accept that bringing math and computation to messy, value-laden human affairs does not bring objectivity; rather, the complexity of human affairs invades the algorithms. Yes, we can and we should use computation to help us make better decisions. But we have to own up to our moral responsibility to judgment, and use algorithms within that framework, not as a means to abdicate and outsource our responsibilities to one another as human to human.

Machine intelligence is here. That means we must hold on ever tighter to human values and human ethics.

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末库糠,一起剝皮案震驚了整個濱河市,隨后出現(xiàn)的幾起案子禾进,更是在濱河造成了極大的恐慌拾积,老刑警劉巖,帶你破解...
    沈念sama閱讀 206,126評論 6 481
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件空盼,死亡現(xiàn)場離奇詭異秋泄,居然都是意外死亡晦溪,警方通過查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 88,254評論 2 382
  • 文/潘曉璐 我一進(jìn)店門饺蚊,熙熙樓的掌柜王于貴愁眉苦臉地迎上來萍诱,“玉大人,你說我怎么就攤上這事污呼≡7唬” “怎么了?”我有些...
    開封第一講書人閱讀 152,445評論 0 341
  • 文/不壞的土叔 我叫張陵曙求,是天一觀的道長碍庵。 經(jīng)常有香客問我,道長悟狱,這世上最難降的妖魔是什么静浴? 我笑而不...
    開封第一講書人閱讀 55,185評論 1 278
  • 正文 為了忘掉前任,我火速辦了婚禮挤渐,結(jié)果婚禮上苹享,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好得问,可當(dāng)我...
    茶點故事閱讀 64,178評論 5 371
  • 文/花漫 我一把揭開白布囤攀。 她就那樣靜靜地躺著,像睡著了一般宫纬。 火紅的嫁衣襯著肌膚如雪焚挠。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 48,970評論 1 284
  • 那天漓骚,我揣著相機(jī)與錄音蝌衔,去河邊找鬼。 笑死蝌蹂,一個胖子當(dāng)著我的面吹牛噩斟,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播孤个,決...
    沈念sama閱讀 38,276評論 3 399
  • 文/蒼蘭香墨 我猛地睜開眼剃允,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了齐鲤?” 一聲冷哼從身側(cè)響起斥废,我...
    開封第一講書人閱讀 36,927評論 0 259
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎佳遂,沒想到半個月后营袜,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 43,400評論 1 300
  • 正文 獨居荒郊野嶺守林人離奇死亡丑罪,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 35,883評論 2 323
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了凤壁。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片吩屹。...
    茶點故事閱讀 37,997評論 1 333
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖拧抖,靈堂內(nèi)的尸體忽然破棺而出煤搜,到底是詐尸還是另有隱情,我是刑警寧澤唧席,帶...
    沈念sama閱讀 33,646評論 4 322
  • 正文 年R本政府宣布擦盾,位于F島的核電站,受9級特大地震影響淌哟,放射性物質(zhì)發(fā)生泄漏迹卢。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點故事閱讀 39,213評論 3 307
  • 文/蒙蒙 一徒仓、第九天 我趴在偏房一處隱蔽的房頂上張望腐碱。 院中可真熱鬧,春花似錦掉弛、人聲如沸症见。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,204評論 0 19
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽谋作。三九已至芋肠,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間遵蚜,已是汗流浹背帖池。 一陣腳步聲響...
    開封第一講書人閱讀 31,423評論 1 260
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機(jī)就差點兒被人妖公主榨干…… 1. 我叫王不留谬晕,地道東北人碘裕。 一個月前我還...
    沈念sama閱讀 45,423評論 2 352
  • 正文 我出身青樓,卻偏偏與公主長得像攒钳,于是被迫代替她去往敵國和親帮孔。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點故事閱讀 42,722評論 2 345

推薦閱讀更多精彩內(nèi)容