Video 3
I have a friend who developed such computational systems to predict the likelihood of clinical or postpartum depression from social media data. The results are impressive. Her system can predict the likelihood of depression months before the onset of any symptoms -- months before. No symptoms, there's prediction. She hopes it will be used for early intervention. Great! But now put this in the context of hiring.
So at this human resources managers conference, I approached a high-level manager in a very large company, and I said to her, "Look, what if, unbeknownst to you, your system is weeding out people with high future likelihood of depression? They're not depressed now, just maybe in the future, more likely. What if it's weeding out women more likely to be pregnant in the next year or two but aren't pregnant now? What if it's hiring aggressive people because that's your workplace culture?" You can't tell this by looking at gender breakdowns. Those may be balanced. And since this is machine learning, not traditional coding, there is no variable there labeled "higher risk of depression," "higher risk of pregnancy," "aggressive guy scale." Not only do you not know what your system is selecting on, you don't even know where to begin to look. It's a black box. It has predictive power, but you don't understand it.
"What safeguards," I asked, "do you have to make sure that your black box isn't doing something shady?" She looked at me as if I had just stepped on 10 puppy tails. She stared at me and she said, "I don't want to hear another word about this." And she turned around and walked away. Mind you - she wasn't rude. It was clearly: what I don't know isn't my problem, go away, death stare.
Look, such a system may even be less biased than human managers in some ways. And it could make monetary sense. But it could also lead to a steady but stealthy shutting outof the job market of people with higher risk of depression. Is this the kind of society we want to build, without even knowing we've done this, because we turned decision-making to machines we don't totally understand?
Another problem is this: these systems are often trained on data generated by our actions, human imprints. Well, they could just be reflecting our biases, and these systems could be picking up on our biases and amplifying them and showing them back to us, while we're telling ourselves, "We're just doing objective, neutral computation."
Researchers found that on Google, women are less likely than men to be shown job ads for high-paying jobs. And searching for African-American names is more likely to bring up ads suggesting criminal history, even when there is none. Such hidden biases and black-box algorithms that researchers uncover sometimes but sometimes we don't know, can have life-altering consequences.
In Wisconsin, a defendant was sentenced to six years in prison for evading the police. You may not know this, but algorithms are increasingly used in parole and sentencing decisions. He wanted to know: How is this score calculated? It's a commercial black box. The company refused to have its algorithm be challenged in open court. But ProPublica, an investigative nonprofit, audited that very algorithm with what public data they could find, and found that its outcomes were biased and its predictive power was dismal, barely better than chance, and it was wrongly labeling black defendants as future criminals at twice the rate of white defendants.
So, consider this case: This woman was late picking up her godsister from a school in Broward County, Florida, running down the street with a friend of hers. They spotted an unlocked kid's bike and a scooter on a porch and foolishly jumped on it. As they were speeding off, a woman came out and said, "Hey! That's my kid's bike!" They dropped it, they walked away, but they were arrested.
She was wrong, she was foolish, but she was also just 18. She had a couple of juvenile misdemeanors. Meanwhile, that man had been arrested for shoplifting in Home Depot -- 85 dollars' worth of stuff, a similar petty crime. But he had two prior armed robbery convictions. But the algorithm scored her as high risk, and not him. Two years later, ProPublica found that she had not reoffended. It was just hard to get a job for her with her record. He, on the other hand, did reoffend and is now serving an eight-year prison term for a later crime. Clearly, we need to audit our black boxes and not have them have this kind of unchecked power.
Video 4
Audits are great and important, but they don't solve all our problems. Take Facebook's powerful news feed algorithm - you know, the one that ranks everything and decides what to show you from all the friends and pages you follow. Should you be shown another baby picture?
A sullen note from an acquaintance? An important but difficult news item? There's no right answer. Facebook optimizes for engagement on the site: likes, shares, comments.
In August of 2014, protests broke out in Ferguson, Missouri, after the killing of an African-American teenager by a white police officer, under murky circumstances. The news of the protests was all over my algorithmically unfiltered Twitter feed, but nowhere on my Facebook. Was it my Facebook friends? I disabled Facebook's algorithm, which is hard because Facebook keeps wanting to make you come under the algorithm's control, and saw that my friends were talking about it. It's just that the algorithm wasn't showing it to me. I researched this and found this was a widespread problem.
The story of Ferguson wasn't algorithm-friendly. It's not "likable." Who's going to click on "like?" It's not even easy to comment on. Without likes and comments, the algorithm was likely showing it to even fewer people, so we didn't get to see this. Instead, that week, Facebook's algorithm highlighted this, which is the ALS Ice Bucket Challenge. Worthy cause; dump ice water, donate to charity, fine. But it was super algorithm-friendly. The machine made this decision for us. A very important but difficult conversation might have been smothered, had Facebook been the only channel.
Now, finally, these systems can also be wrong in ways that don't resemble human systems. Do you guys remember Watson, IBM's machine-intelligence system that wiped the floor with human contestants on Jeopardy? It was a great player. But then, for Final Jeopardy, Watson was asked this question: "Its largest airport is named for a World War II hero, its second-largest for a World War II battle."
Chicago. The two humans got it right. Watson, on the other hand, answered "Toronto" - for a US city category! The impressive system also made an error that a human would never make, a second-grader wouldn't make.
Our machine intelligence can fail in ways that don't fit error patterns of humans, in ways we won't expect and be prepared for. It'd be lousy not to get a job one is qualified for, but it would triple suck if it was because of stack overflow in some subroutine.
In May of 2010, a flash crash on Wall Street fueled by a feedback loop in Wall Street's "sell" algorithm wiped a trillion dollars of value in 36 minutes. I don't even want to think what "error" means in the context of lethal autonomous weapons.
So yes, humans have always made biases. Decision makers and gatekeepers, in courts, in news, in war ... they make mistakes; but that's exactly my point. We cannot escape these difficult questions. We cannot outsource our responsibilities to machines.
Artificial intelligence does not give us a "Get out of ethics free" card.
Data scientist Fred Benenson calls this math-washing. We need the opposite. We need to cultivate algorithm suspicion, scrutiny and investigation. We need to make sure we have algorithmic accountability, auditing and meaningful transparency. We need to accept that bringing math and computation to messy, value-laden human affairs does not bring objectivity; rather, the complexity of human affairs invades the algorithms. Yes, we can and we should use computation to help us make better decisions. But we have to own up to our moral responsibility to judgment, and use algorithms within that framework, not as a means to abdicate and outsource our responsibilities to one another as human to human.
Machine intelligence is here. That means we must hold on ever tighter to human values and human ethics.