一逸月、Prometheus-Operator介紹
Prometheus Operator 是了為簡化在 Kubernetes 上部署晒衩、管理和運行 Prometheus 和 Alertmanager 集群而設計的,它為監(jiān)控 Kubernetes 資源和 Prometheus 實例的管理提供了簡單的定義细燎,比如自帶了一些報警規(guī)則和展示看板。
Prometheus Operator 架構(gòu)圖
Prometheus Operator 組件:
- Operator:控制器秫逝,根據(jù)自定義資源來部署和管理 Prometheus Server古程;
- Prometheus Server: 根據(jù)自定義資源 Prometheus 類型中定義的內(nèi)容而部署的 Prometheus Server 集群,這些自定義資源可以看作是用來管理 Prometheus Server 集群的 StatefulSets 資源屯伞;
- Prometheus:聲明 Prometheus 資源對象期望的狀態(tài)腿箩,Operator 確保這個資源對象運行時一直與定義保持一致;
- ServiceMonitor:聲明指定監(jiān)控的服務劣摇, 也就是exporter 的抽象珠移,通過 Labels 來選取對應的Service Endpoint,讓 Prometheus Server 通過選取的 Service 來獲取 Metrics 信息末融。
- Service:需要監(jiān)控的服務钧惧,簡單的說就是 Prometheus 監(jiān)控的對象。
二勾习、Prometheus-Operator安裝
可以使用Helm方式安裝浓瞪,這里選擇的是手動安裝
下載Prometheus-Operator項目到本地服務器
$ git clone https://github.com/coreos/kube-prometheus.git
$ cd manifests
安裝setup目錄下的CRD和Operator對象
$ kubectl apply -f setup/
namespace/monitoring created
customresourcedefinition.apiextensions.k8s.io/alertmanagers.monitoring.coreos.com created
customresourcedefinition.apiextensions.k8s.io/podmonitors.monitoring.coreos.com created
customresourcedefinition.apiextensions.k8s.io/probes.monitoring.coreos.com created
customresourcedefinition.apiextensions.k8s.io/prometheuses.monitoring.coreos.com created
customresourcedefinition.apiextensions.k8s.io/prometheusrules.monitoring.coreos.com created
customresourcedefinition.apiextensions.k8s.io/servicemonitors.monitoring.coreos.com created
customresourcedefinition.apiextensions.k8s.io/thanosrulers.monitoring.coreos.com created
clusterrole.rbac.authorization.k8s.io/prometheus-operator created
clusterrolebinding.rbac.authorization.k8s.io/prometheus-operator created
deployment.apps/prometheus-operator created
service/prometheus-operator created
serviceaccount/prometheus-operator created
創(chuàng)建manifests目錄下的各類資源
$ kubectl apply -f .
alertmanager.monitoring.coreos.com/main created
secret/alertmanager-main created
service/alertmanager-main created
serviceaccount/alertmanager-main created
.............
$ kubectl get pods -n monitoring
NAME READY STATUS RESTARTS AGE
alertmanager-main-0 1/2 Running 0 2d17h
alertmanager-main-1 1/2 Running 0 2d17h
alertmanager-main-2 1/2 Running 0 2d17h
grafana-86445dccbb-m7kzg 1/1 Running 0 2d17h
kube-state-metrics-5b67d79459-zf27k 3/3 Running 0 2d17h
node-exporter-blx8m 2/2 Running 0 2d17h
node-exporter-zpns2 2/2 Running 0 2d17h
node-exporter-zrd6g 2/2 Running 0 2d17h
prometheus-adapter-66b855f564-mf9mc 1/1 Running 0 2d17h
prometheus-k8s-0 3/3 Running 1 2d17h
prometheus-k8s-1 3/3 Running 1 2d17h
prometheus-operator-78fcb48ccf-sgklz 2/2 Running 0 2d17h
三、通過Ingress訪問組件
由于這些資源的默認Service為ClusterIP巧婶,集群外部無法訪問追逮,我們可以通過使用kubectl edit xxx
命令將Service類型修改為NodePort方式來提供外部訪問。
這里使用Ingress 分別為Prometheus粹舵,Alertmanager钮孵,Grafana創(chuàng)建域名。
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
namespace: monitoring
name: prometheus-ingress
spec:
rules:
- host: k8s.grafana.com
http:
paths:
- backend:
serviceName: grafana
servicePort: 3000
- host: k8s.prometheus.com
http:
paths:
- backend:
serviceName: prometheus-k8s
servicePort: 9090
- host: k8s.alertmanager.com
http:
paths:
- backend:
serviceName: alertmanager-main
servicePort: 9093
創(chuàng)建Ingress對象
$ kubectl create -f ingress.yaml
ingress.extensions/prometheus-ingress created
$ kubectl get ingress -A
NAMESPACE NAME CLASS HOSTS ADDRESS PORTS AGE
default my-nginx <none> nginx.ingress.com 80, 443 2d21h
monitoring prometheus-ingress <none> k8s.grafana.com,k8s.prometheus.com,k8s.alertmanager.com 80 4s
可以看到眼滤,已經(jīng)分別創(chuàng)建了相應的域名巴席,我們在本地的hosts文件添加Ingress主機的IP地址解析即可通過域名訪問了。
四诅需、添加監(jiān)控對象
在上面Kube-proemtheus默認監(jiān)控了一些系統(tǒng)的組件漾唉,我們還需要根據(jù)實際的業(yè)務需求去添加自定義的組件監(jiān)控,添加自定義監(jiān)控對象步驟如下:
- 建立一個 ServiceMonitor 對象堰塌,用于 Prometheus 添加監(jiān)控項
- 為 ServiceMonitor 對象關(guān)聯(lián) metrics 數(shù)據(jù)接口的一個 Service 對象
- 確保 Service 對象可以正確獲取到 metrics 數(shù)據(jù)
比如對etcd服務進行監(jiān)控赵刑,先創(chuàng)建ServiceMonitor對象
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
name: etcd-k8s
namespace: monitoring
labels:
k8s-app: etcd-k8s
spec:
jobLabel: k8s-app
endpoints:
- port: port
interval: 15s
selector:
matchLabels:
k8s-app: etcd
namespaceSelector:
matchNames:
- kube-system
定義為:匹配 kube-system 這個命名空間下面的具有k8s-app=etcd
這個 label 標簽的 Service,其中jobLabel 表示用于檢索 job 任務名稱的標簽场刑。
創(chuàng)建這個serviceMonitor對象
$ kubectl apply -f prometheus-serviceMonitorEtcd.yaml
servicemonitor.monitoring.coreos.com "etcd-k8s" created
然后再創(chuàng)建一個Etcd的Service 對象
apiVersion: v1
kind: Service
metadata:
name: etcd-k8s
namespace: kube-system
labels:
k8s-app: etcd
spec:
type: ClusterIP
clusterIP: None # 一定要設置 clusterIP:None
ports:
- name: port
port: 2381
---
apiVersion: v1
kind: Endpoints
metadata:
name: etcd-k8s
namespace: kube-system
labels:
k8s-app: etcd
subsets:
- addresses:
- ip: 192.168.16.173 # 指定etcd節(jié)點地址般此,如果是集群則繼續(xù)向下添加
nodeName: etc-master
ports:
- name: port
port: 2381
上面文件定義為:將后端的Etcd服務通過Endpoints添加到集群,然后為其創(chuàng)建Service對象
創(chuàng)建這個Service對象
$ kubectl apply -f etcd-service.yaml
service/etcd-k8s configured
endpoints/etcd-k8s configured
$ kubectl get svc -n kube-system -l k8s-app=etcd
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
etcd-k8s ClusterIP None <none> 2381/TCP 1d
創(chuàng)建完成后去prommetheus查看targes
[圖片上傳失敗...(image-477e83-1603792328401)]
可以看到2381 端口鏈接被拒絕,這是因為在創(chuàng)建etcd服務時metrics接口設置為- --listen-metrics-urls=http://127.0.0.1:2381
铐懊,我們只需要修改 /etc/kubernetes/manifest/ 目錄下面的 etcd.yaml 文件中將上面的listen-metrics-urls
更改成節(jié)點 IP 即可:
- --listen-metrics-urls=http://192.168.16.173:2381
修改后etcd會自動重啟邀桑,然后在去Prometheus查看是否正常
然后在Grafana導入編號為 3070 的 dashboard,就可以獲取到 etcd 的監(jiān)控圖表:(grafana默認口令為admin/admin)
五科乎、自定義報警規(guī)則
1. 指定Alertmanager地址
在之前使用部署Prometheus時壁畸,我們只需要修改Prometheus下的Prometheus.yaml 配置文件來指定Alertmanager地址即可。現(xiàn)在通過Operator方式部署的Prometheus如何指定呢茅茂?我們可以先去Prometheus的web頁面上查看Configuration的配置信息
可以看到上面 alertmanagers 的配置是通過 role 為 endpoints 的 kubernetes 的自動發(fā)現(xiàn)機制獲取的捏萍,匹配的是服務名為 alertmanager-main,端口名為 web 的 Service 服務空闲,所以Prometheus就這樣指定了Alertmanager的地址照弥。
2. 添加報警規(guī)則
在上面的配置中可以看到規(guī)則文件的路徑為: /etc/prometheus/rules/prometheus-k8s-rulefiles-0/*.yaml
,我們可以進入Prometheus的容器中查看:
$ kubectl exec -it prometheus-k8s-0 /bin/sh -n monitoring
Defaulting container name to prometheus.
Use 'kubectl describe pod/prometheus-k8s-0 -n monitoring' to see all of the containers in this pod.
/prometheus $ ls /etc/prometheus/rules/prometheus-k8s-rulefiles-0/
monitoring-prometheus-k8s-rules.yaml
/prometheus $ cat /etc/prometheus/rules/prometheus-k8s-rulefiles-0/monitoring-pr
ometheus-k8s-rules.yaml
groups:
- name: k8s.rules
rules:
- expr: |
sum(rate(container_cpu_usage_seconds_total{job="kubelet", image!="", container_name!=""}[5m])) by (namespace)
record: namespace:container_cpu_usage_seconds_total:sum_rate
......
而這個文件實際上就是我們之前創(chuàng)建的一個 PrometheusRule 文件包含的內(nèi)容:
$ cat manifests/prometheus-rules.yaml | head -10
apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
labels:
prometheus: k8s
role: alert-rules
name: prometheus-k8s-rules
namespace: monitoring
spec:
groups:
這個文件中有非常重要的一個屬性ruleSelector
进副,用來匹配 rule 規(guī)則的過濾器这揣,要求匹配具有 prometheus=k8s
和 role=alert-rules
標簽的 PrometheusRule 資源對象。
ruleSelector:
matchLabels:
prometheus: k8s
role: alert-rules
所以我們想要添加規(guī)則時影斑,只需要創(chuàng)建一個具有prometheus=k8s
和 role=alert-rules
標簽的 PrometheusRule 對象就可以了给赞,比如我們對剛才添加的etcd服務編寫一條是否可用的報警規(guī)則。
apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
labels:
prometheus: k8s
role: alert-rules
name: etcd-rules
namespace: monitoring
spec:
groups:
- name: etcd
rules:
- alert: EtcdClusterUnavailable
annotations:
summary: etcd cluster small
description: If one more etcd peer goes down the cluster will be unavailable
expr: |
count(up{job="etcd"} == 0) > (count(up{job="etcd"}) / 2 - 1)
for: 3m
labels:
severity: critical
創(chuàng)建這個PrometheusRule對象矫户,然后查看Prometheus容器是否有這個報警規(guī)則文件
$ kubectl create -f etcd-rules.yaml
prometheusrule.monitoring.coreos.com/etcd-rules created
[root@k8s-master01 manifests]# kubectl exec -it prometheus-k8s-0 /bin/sh -n monitoring
$ kubectl exec [POD] [COMMAND] is DEPRECATED and will be removed in a future version. Use kubectl kubectl exec [POD] -- [COMMAND] instead.
Defaulting container name to prometheus.
Use 'kubectl describe pod/prometheus-k8s-0 -n monitoring' to see all of the containers in this pod.
/prometheus $ ls /etc/prometheus/rules/prometheus-k8s-rulefiles-0/
monitoring-etcd-rules.yaml monitoring-prometheus-k8s-rules.yaml
然后再去prometheus的web頁面查看下
六片迅、配置微信方式報警
現(xiàn)在報警規(guī)則有了,但是報警渠道還沒有配置皆辽,所以下面我們來修改下Alertmanager的配置柑蛇,首先我們可以去 Alertmanager 的頁面上 status 路徑下面查看 AlertManager 的配置信息:
這些配置的來由也是我們之前創(chuàng)建的alertmanger-secret文件。
$ cat manifests/alertmanager-secret.yaml
apiVersion: v1
data: {}
kind: Secret
metadata:
name: alertmanager-main
namespace: monitoring
stringData:
alertmanager.yaml: |-
"global":
"resolve_timeout": "5m"
"inhibit_rules":
- "equal":
- "namespace"
- "alertname"
"source_match":
"severity": "critical"
"target_match_re":
"severity": "warning|info"
- "equal":
- "namespace"
- "alertname"
"source_match":
"severity": "warning"
"target_match_re":
"severity": "info"
"receivers":
- "name": "Default"
- "name": "Watchdog"
- "name": "Critical"
"route":
"group_by":
- "namespace"
"group_interval": "5m"
"group_wait": "30s"
"receiver": "Default"
"repeat_interval": "12h"
"routes":
- "match":
"alertname": "Watchdog"
"receiver": "Watchdog"
- "match":
"severity": "critical"
"receiver": "Critical"
type: Opaque
然后我們就可以通過修改這個yaml文件來指定我們的報警渠道了驱闷,比如我們這里將critical級別的報警發(fā)送到微信耻台。
apiVersion: v1
data: {}
kind: Secret
metadata:
name: alertmanager-main
namespace: monitoring
stringData:
alertmanager.yaml: |-
"global":
"resolve_timeout": "5m"
"inhibit_rules":
- "equal":
- "namespace"
- "alertname"
"source_match":
"severity": "critical"
"target_match_re":
"severity": "warning|info"
- "equal":
- "namespace"
- "alertname"
"source_match":
"severity": "warning"
"target_match_re":
"severity": "info"
"receivers":
- "name": "Default"
- "name": "Watchdog"
- "name": "Critical"
"wechat_configs": #添加微信的認證
- "corp_id": 'ww314010b4720f24'
"to_party": '1'
"agent_id": '1000002'
"api_secret": '9nmYzEg8X860ZBIoOkToCbh_oNc'
"send_resolved": true
"route":
"group_by":
- "namespace"
"group_interval": "5m"
"group_wait": "30s"
"receiver": "Default"
"repeat_interval": "12h"
"routes":
- "match":
"alertname": "Watchdog"
"receiver": "Watchdog"
- "match":
"severity": "critical"
"receiver": "Critical"
type: Opaque
然后強制更新alertmanager-secret對象
$ kubectl delete -f alertmanager-secret.yaml
ksecret "alertmanager-main" deleted
$ kubectl apply -f alertmanager-secret.yaml
secret/alertmanager-main created
然后查看alertmanger的web頁面中的配置信息是否加載
如果有critical級別的報警,微信就會收到報警信息
七空另、自動發(fā)現(xiàn)配置
當集群中的Service和Pod越來越多時盆耽,我們再手動的為每一個服務創(chuàng)建相應的ServiceMonitor就很麻煩了,所以為解決這個問題扼菠,Prometheus Operator 為我們提供了一個額外的抓取配置的來解決這個問題摄杂,我們可以通過添加額外的配置來進行服務發(fā)現(xiàn)進行自動監(jiān)控。
新建prometheus-additional.yaml
- job_name: 'kubernetes-endpoints'
kubernetes_sd_configs:
- role: endpoints
relabel_configs:
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
action: keep
regex: true
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
action: replace
target_label: __scheme__
regex: (https?)
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
action: replace
target_label: __metrics_path__
regex: (.+)
- source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
action: replace
target_label: __address__
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $1:$2
- action: labelmap
regex: __meta_kubernetes_service_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_service_name]
action: replace
target_label: kubernetes_name
- source_labels: [__meta_kubernetes_pod_name]
action: replace
target_label: kubernetes_pod_name
通過這個文件創(chuàng)建一個對應的 Secret 對象:
$ kubectl create secret generic additional-configs --from-file=prometheus-additional.yaml -n monitoring
secret "additional-configs" created
然后我們需要在聲明 prometheus 的資源對象文件中通過additionalScrapeConfigs
屬性添加上這個額外的配置:
$ cat prometheus-prometheus.yaml
.................
serviceAccountName: prometheus-k8s
serviceMonitorNamespaceSelector: {}
serviceMonitorSelector: {}
version: v2.20.0
additionalScrapeConfigs:
name: additional-configs
key: prometheus-additional.yaml
添加完成后循榆,更新 prometheus 這個 CRD 資源對象
$ kubectl apply -f prometheus-prometheus.yaml
prometheus.monitoring.coreos.com/k8s configured
然后我們就可以在Prometheus的可視化頁面查看是否加載了該配置
但是在 targets 頁面下面并沒有對應的監(jiān)控任務析恢,查看 Prometheus 的 Pod 日志:
$ kubectl logs -f prometheus-k8s-0 prometheus -n monitoring
.............
level=error ts=2020-10-27T06:01:30.129Z caller=klog.go:94 component=k8s_client_runtime func=ErrorDepth msg="/app/discovery/kubernetes/kubernetes.go:361: Failed to list *v1.Endpoints: endpoints is forbidden: User \"system:serviceaccount:monitoring:prometheus-k8s\" cannot list resource \"endpoints\" in API group \"\" at the cluster scope"
level=error ts=2020-10-27T06:01:39.194Z caller=klog.go:94 component=k8s_client_runtime func=ErrorDepth msg="/app/discovery/kubernetes/kubernetes.go:362: Failed to list *v1.Service: services is forbidden: User \"system:serviceaccount:monitoring:prometheus-k8s\" cannot list resource \"services\" in API group \"\" at the cluster scope"
這個報錯的原因是因為Prometheus綁定了一個名為 prometheus-k8s 的 ServiceAccount 對象,而這個ServiceAccount賬戶綁定的是一個名為 prometheus-k8s 的 ClusterRole集群角色秧饮,查看這個ClusterRole的權(quán)限
$ cat prometheus-clusterRole.yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: prometheus-k8s
rules:
- apiGroups:
- ""
resources:
- nodes/metrics
verbs:
- get
- nonResourceURLs:
- /metrics
verbs:
- get
可以看到這個clusterRole沒有對 Service 或者 Pod 的 list 權(quán)限映挂,添加上對應權(quán)限應該就可以了泽篮。
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: prometheus-k8s
rules:
- apiGroups:
- ""
resources:
- nodes
- services
- endpoints
- pods
- nodes/proxy
verbs:
- get
- list
- watch
- apiGroups:
- ""
resources:
- configmaps
- nodes/metrics
verbs:
- get
- nonResourceURLs:
- /metrics
verbs:
- get
重建Prometheus的所有對象
$ cd manifests
$ mkdir prometheus
$ mv prometheus-* prometheus
$ cd prometheus
$ kubectl delete -f .
$ kubectl apply -f .
重建完成后就可以看到 targets 頁面下面有 kubernetes-endpoints 這個監(jiān)控任務了:
可以看到,抓取到了
kube-dns
這個Service袖肥,這是因為Service 中含有 prometheus.io/scrape=true
這個 annotation咪辱,可以查看下kube-dns
的service信息
$ kubectl describe svc kube-dns -n kube-system
Name: kube-dns
Namespace: kube-system
Labels: k8s-app=kube-dns
kubernetes.io/cluster-service=true
kubernetes.io/name=KubeDNS
Annotations: prometheus.io/port: 9153
prometheus.io/scrape: true
Selector: k8s-app=kube-dns
Type: ClusterIP
IP: 10.96.0.10
Port: dns 53/UDP
TargetPort: 53/UDP
Endpoints: 10.244.0.2:53,10.244.0.3:53
Port: dns-tcp 53/TCP
TargetPort: 53/TCP
Endpoints: 10.244.0.2:53,10.244.0.3:53
Port: metrics 9153/TCP
TargetPort: 9153/TCP
Endpoints: 10.244.0.2:9153,10.244.0.3:9153
Session Affinity: None
Events: <none>
所以我們在創(chuàng)建Service的時候就要添加 prometheus.io/scrape=true
這個annotations振劳,才可以被Prometheus的服務發(fā)現(xiàn)抓取到椎组,添加方式如下:
apiVersion: v1
kind: Service
metadata:
annotations:
prometheus.io/port: "9153"
prometheus.io/scrape: "true"
creationTimestamp: "2020-10-26T08:39:47Z"
labels:
k8s-app: kube-dns
kubernetes.io/cluster-service: "true"
............
注意: 雖然應用添加了這個annotations信息,Prometheus也可以抓取到這個目標历恐,但前提是這個應用必須提供了metics接口來暴露指標信息寸癌,可以通過 prometheus.io/port: "9153"
這個annotations來指定metics接口,否則prometheus采集不到metics信息弱贼,則會認為這個服務是DOWN
狀態(tài)蒸苇。
八、使用NFS持久化數(shù)據(jù)
在上面我們重建了Prometheus的Pod吮旅,查看時會發(fā)現(xiàn)之前的數(shù)據(jù)都丟失了溪烤,這是因為我們通過 prometheus 這個 CRD 創(chuàng)建的 Prometheus 并沒有做數(shù)據(jù)的持久化,
$ kubectl get pod prometheus-k8s-0 -n monitoring -o yaml
......
volumeMounts:
- mountPath: /etc/prometheus/config_out
name: config-out
readOnly: true
- mountPath: /prometheus
name: prometheus-k8s-db
......
volumes:
......
- emptyDir: {}
name: prometheus-k8s-db
......
可以看到 Prometheus 的數(shù)據(jù)目錄 /prometheus 實際上是通過emptyDir
進行掛載的庇勃,而emptyDir的設計就是應用刪除后檬嘀,數(shù)據(jù)也會刪除,所以我們需要對Prometheus的數(shù)據(jù)進行持久化责嚷。
Prometheus是通過 Statefulset 控制器進行部署的鸳兽,所以我們這里通過 storageclass 來做數(shù)據(jù)持久化,這里我們選擇之前搭建的NFS StorageClass作為數(shù)據(jù)持久化罕拂。
在Prometheus的CRD對象中添加storage屬性:
$ cat prometheus-prometheus.yaml
apiVersion: monitoring.coreos.com/v1
kind: Prometheus
metadata:
labels:
prometheus: k8s
name: k8s
namespace: monitoring
spec:
alerting:
alertmanagers:
- name: alertmanager-main
namespace: monitoring
port: web
storage: #持久化存儲
volumeClaimTemplate:
spec:
storageClassName: nfs-data-db
resources:
requests:
storage: 10Gi
image: quay.io/prometheus/prometheus:v2.20.0
nodeSelector:
kubernetes.io/os: linux
podMonitorNamespaceSelector: {}
podMonitorSelector: {}
probeNamespaceSelector: {}
probeSelector: {}
replicas: 2
resources:
requests:
memory: 400Mi
ruleSelector:
matchLabels:
prometheus: k8s
role: alert-rules
securityContext:
fsGroup: 2000
runAsNonRoot: true
runAsUser: 1000
serviceAccountName: prometheus-k8s
serviceMonitorNamespaceSelector: {}
serviceMonitorSelector: {}
version: v2.20.0
additionalScrapeConfigs:
name: additional-configs
key: prometheus-additional.yaml
更新prometheus CRD 資源
$ kubectl apply -f prometheus-prometheus.yaml
prometheus.monitoring.coreos.com/k8s configured
查看PVC狀態(tài)
$ kubectl get pvc -n monitoring
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
prometheus-k8s-db-prometheus-k8s-0 Bound pvc-8e73e8b2-1e98-452c-8aaa-a9ba694fe234 10Gi RWO nfs-data-db 2m
prometheus-k8s-db-prometheus-k8s-1 Bound pvc-fe817cdd-812f-489e-b82c-d5de7f0dbf93 10Gi RWO nfs-data-db 2m