<p>CUDA編程首先呢是分配thread以及block<p>
#include<stdio.h>
#include<time.h>
#include<cuda_runtime.h> //cuda運(yùn)行時(shí)間接口
#define Thread_Num 256 //每一block包含的線程數(shù)
#define Matrix_Size 10
const int block_num=(Matrix_Size+Thread_Num-1)/Thread_Num;
然后是兩個(gè)基本的函數(shù):
//打印設(shè)備信息
void printDeviceProp(const cudaDeviceProp &prop)
{
printf("Device Name : %s.\n", prop.name);
printf("totalGlobalMem : %d.\n", prop.totalGlobalMem);
printf("sharedMemPerBlock : %d.\n", prop.sharedMemPerBlock);
printf("regsPerBlock : %d.\n", prop.regsPerBlock);
printf("warpSize : %d.\n", prop.warpSize);
printf("memPitch : %d.\n", prop.memPitch);
printf("maxThreadsPerBlock : %d.\n", prop.maxThreadsPerBlock);
printf("maxThreadsDim[0 - 2] : %d %d %d.\n", prop.maxThreadsDim[0], prop.maxThreadsDim[1], prop.maxThreadsDim[2]);
printf("maxGridSize[0 - 2] : %d %d %d.\n", prop.maxGridSize[0], prop.maxGridSize[1], prop.maxGridSize[2]);
printf("totalConstMem : %d.\n", prop.totalConstMem);
printf("major.minor : %d.%d.\n", prop.major, prop.minor);
printf("clockRate : %d.\n", prop.clockRate);
printf("textureAlignment : %d.\n", prop.textureAlignment);
printf("deviceOverlap : %d.\n", prop.deviceOverlap);
printf("multiProcessorCount : %d.\n", prop.multiProcessorCount);
}
//初始化cuda
bool InitCUDA()
{
int count;
cudaGetDeviceCount(&count);
if(count==0){
fprintf(stderr,"three is no device.\n");
return false;
}
int i;
for(i=0;i<count;i++)
{
cudaDeviceProp prop;
cudaGetDeviceProperties(&prop,i);
printDeviceProp(prop);
if(cudaGetDeviceProperties(&prop,i)==cudaSuccess){
if(prop.major>=1){break;}
}
}
if (i == count) {
fprintf(stderr, "There is no device supporting CUDA 1.x.\n");
return false;
}
cudaSetDevice(i);
return true;
}
//接著隨機(jī)生成兩個(gè)矩陣
void matGen(float* a, int n)
{
int i,j;
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
a[i*n+j]=(float)rand()/(float)RAND_MAX+1.00;
}
}
}
//并行矩陣乘法函數(shù)喇伯,最主要的一部分
__global__ static void matMultCuda(const float* a,const float* b,float* c,int n,clock_t* time)
{
const int tid=threadIdx.x;
const int bid=blockIdx.x;
//從 bid 和 tid 計(jì)算出這個(gè) thread 應(yīng)該計(jì)算的 row 和 column
const int idx = bid * Thread_Num + tid;
const int row = idx / n;
const int column = idx % n;
int i;
//clock_t start;
//每個(gè)block開(kāi)始時(shí)記錄
if(tid==0) time[bid]=clock();
//計(jì)算矩陣乘法
if(row < n && column < n)
{
float t=0;
for(i=0;i<n;i++)
{
t=t+a[row*n+i]+a[i*n+column];
}
c[row*n+column]=t;
}
//計(jì)算時(shí)間,記錄結(jié)果,只在 thread 0(即 threadIdx.x = 0 的時(shí)候)進(jìn)行携狭,每個(gè) block 都會(huì)記錄開(kāi)始時(shí)間及結(jié)束時(shí)間
if (tid == 0) time[bid + block_num] = clock();
}
//運(yùn)算完后打印出矩陣
void printMatrix(const float *A, const int n) {
for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++){
printf("%.2f" ,A[i*n+j]);
printf(" ");
}
printf("\n");
}
printf("\n");
}
//最后我們來(lái)看一下主函數(shù)
int main()
{
if(!InitCUDA()) return 0;
float *a,*b,*c;
int n=Matrix_Size;
//分配內(nèi)存
a=(float*)malloc(sizeof(float)*n*n);
b=(float*)malloc(sizeof(float)* n*n);
c=(float*)malloc(sizeof(float)* n*n);
//設(shè)置隨機(jī)種子
srand(0);
//隨機(jī)生成兩個(gè)矩陣
matGen(a,n);
matGen(b,n);
float *cuda_a,*cuda_b,*cuda_c;
clock_t* time;
//cudaMalloc 獲取一塊顯卡內(nèi)存
cudaMalloc((void**)&cuda_a, sizeof(float)* n*n);
cudaMalloc((void**)&cuda_b, sizeof(float)* n*n);
cudaMalloc((void**)&cuda_c, sizeof(float)* n*n);
cudaMalloc((void**)&time, sizeof(clock_t)* block_num*2);
//cudaMemcpy 將產(chǎn)生的矩陣復(fù)制到顯卡內(nèi)存中
//cudaMemcpyHostToDevice - 從內(nèi)存復(fù)制到顯卡內(nèi)存
//cudaMemcpyDeviceToHost - 從顯卡內(nèi)存復(fù)制到內(nèi)存
cudaMemcpy(a,cuda_a,sizeof(float)* n*n,cudaMemcpyHostToDevice);
cudaMemcpy(b,cuda_b,sizeof(float)* n*n,cudaMemcpyHostToDevice);
//printMatrix(cuda_a, n);
//printMatrix(cuda_b, n);
// 在CUDA 中執(zhí)行函數(shù) 語(yǔ)法:函數(shù)名稱(chēng)<<<block 數(shù)目, thread 數(shù)目, shared memory 大小>>>(參數(shù)...);
matMultCuda<<<block_num, Thread_Num, 0>>>(cuda_a,cuda_b,cuda_c,n,time);
//把結(jié)果復(fù)制回內(nèi)存中
clock_t time_use[block_num*2];
cudaMemcpy(c,cuda_c,sizeof(float)* n*n,cudaMemcpyDeviceToHost);
cudaMemcpy(&time_use, time, sizeof(clock_t)* block_num * 2, cudaMemcpyDeviceToHost);
printMatrix(a, n);
printMatrix(b, n);
printMatrix(c, n);
//釋放資源
cudaFree(cuda_a);
cudaFree(cuda_b);
cudaFree(cuda_c);
cudaFree(time);
//把每個(gè) block 最早的開(kāi)始時(shí)間,和最晚的結(jié)束時(shí)間相減缤剧,取得總運(yùn)行時(shí)間
clock_t min_start, max_end;
min_start = time_use[0];
max_end = time_use[block_num];
for (int i = 1; i < block_num; i++)
{
if (min_start > time_use[i]) min_start = time_use[i];
if (max_end < time_use[i + block_num]) max_end = time_use[i + block_num];
}
//核函數(shù)運(yùn)行時(shí)間
clock_t final_time = max_end - min_start;
printf("gputime: %d\n", final_time);
return 0;
}