寫在前面
插值問題講的是啥呢脱柱?實際上就是求原函數(shù)佣蓉,但是我們這里只有幾個離散點的值兆解,本章主要研究的就是不同的方法求出不同的插值多項式馆铁。
1.1 拉格朗日插值多項式
線性插值:線性插值是最簡單的插值函數(shù),就是兩點決定一條直線锅睛,用兩點式表示了而已埠巨。
那我們換一種表示方法,把兩點式中的兩個式子給他換個名字:
這個
l?
和l?
就是傳說中的線性插值基函數(shù)
接下來講一個貫穿整個插值函數(shù)的例題:
現(xiàn)在看這道題可能有點簡單现拒,到了后面再做的時候就明白這道題的霸道啦~
拋物插值:拋物插值就是線性插值的進階版辣垒,給出三個點,求出來的插值多項式就是所謂的拋物插值具练。
從線性插值中推理過來:
這里面的
l?
乍构,l?
,l?
展開后扛点,就是介個樣子:那我們再把這個例題掏出來:
很明顯哥遮,這個結(jié)果比線性插值精度高一些~
一般的:
對于我們的l?
:
那一般的插值基函數(shù)就是這樣的:
l?
陵究,被減數(shù)是l?
眠饮,這是個用來記憶的規(guī)律~
所以根據(jù)基函數(shù),可以得到n階插值多項式的表達(dá)方式如下:為了表示方便铜邮,引入w來做一個標(biāo)記仪召,w實際上就是分母:
實際上吧,我覺得這里沒有太大必要這樣表示松蒜,但是為了后續(xù)的理解扔茅,姑且先記一下叭~繞了個小彎。
1.2 拉格朗日插值多項式余項
啥是余項?
通俗來講秸苗,余項就是誤差召娜,所以插值多項式的余項可以表示成:
f(x)
是精確解,L?(x)
是所求的多項式惊楼。
再進一步寫:快看這里的w眼熟不玖瘸!就是上面那個展開奇奇怪怪的東西~
具體的證明不需要記秸讹,但是要記住,余項表達(dá)式只有在f(x)
的高階導(dǎo)數(shù)存在時才能用雅倒。
通常璃诀,我們求函數(shù)的n+1
階導(dǎo)數(shù)max|f??1(x)| = M???
,從而將誤差放縮:
所以蔑匣,我們直接拿來結(jié)果劣欢!
n=1
時,即線性插值余項:
n=2
時裁良,即拋物插值余項:
那我們再把上面那道例題掏出來氧秘,這里的運算比較復(fù)雜, 考試估計不會這樣趴久,但求誤差估計的方法很典型,看明白就好
這里方法有一個局限性搔确,就是必須要知道導(dǎo)函數(shù)的上界彼棍,屬于事前誤差估計,那如果上界不知道呢膳算?
事后誤差估計方法
事后誤差估計是個怎么回事兒呢座硕?通俗來講,就是多算一位涕蜂,分別把L?
和L???
的式子算出來华匾,近似相等,可以得到結(jié)果和誤差:
1.2 差商
定義: 一階差商就是机隙,函數(shù)值之差比上自變量之差:
二階差商就是一階差商的差商:
那么一般地蜘拉,K階差商:
性質(zhì)
- K階差商可以表示為f(x0)···f(xk)的線性組合
- 差商與節(jié)點的排列次序無關(guān),具有對稱性
計算:使用差商表最方便
另外還有一個題型無法使用差商表:
這時候要想起來一個和計算有關(guān)的性質(zhì):
則有:
一般這樣的題型求導(dǎo)之后有鹿,導(dǎo)數(shù)值都是一個常數(shù)旭旭,可以直接計算出結(jié)果。
1.3 牛頓插值多項式
實際上牛頓和拉格朗日插值是等價的葱跋,拉格朗日插值有高度的對稱性持寄;牛頓插值多項式來自于差商,其意義在于具有承襲性娱俺,即增加一項可以從上一項推出來稍味。
定義式:Newton插值余項
又雙叒叕掏出來上面那道例題:
在使用Newton插值多項式的時候荠卷,先根據(jù)變量值和函數(shù)值計算出差商表模庐,再結(jié)合公式帶入即可:
1.4 分段插值
龍格現(xiàn)象:所謂龍格現(xiàn)象,就是當(dāng)插值多項式的次數(shù)隨著節(jié)點個數(shù)增加時僵朗,有可能產(chǎn)生激烈的震蕩從而不符合原函數(shù)赖欣。
分段插值:分段插值就是將被插值函數(shù)分成一小段一小段屑彻,在每個小段里面逼近,從而達(dá)到比較好的效果顶吮。
1.4.1 分端Lagrange插值
分段線性插值:將一個區(qū)間化為n個小區(qū)間社牲,記h
是所有區(qū)間長度的最大值,則Ih
在[a,b]上連續(xù)悴了、存在且在每一段上都是線性多項式搏恤,即為分段線性差值函數(shù)。
實際上就是在每個小區(qū)間上的折線湃交,可以用拉格朗日插值多項式表示:
重點要記一下余項的算法:
分段線性插值:
分段二次插值:
1.4.2 分段Hermit插值
為了克服拉格朗日插值中熟空,分段點處不可導(dǎo)的問題
這邊的證明太太太長了,我們記幾個關(guān)鍵的公式即可:
三次Hermit插值公式:
其中的四個式子就是三次Hermit插值基函數(shù)
還是用一道例題熟悉吧
方法一:基函數(shù)法
方法二:待定系數(shù)法我覺得待定系數(shù)好理解一點emm
1.5 樣條函數(shù)
樣條函數(shù)的特點是搞莺。充分光滑息罗,即導(dǎo)數(shù)連續(xù);又有一定的間斷性才沧,即分段的特性迈喉。
三次樣條插值
計算三次樣條函數(shù)時,需要的邊界條件:
- 端點處的一階導(dǎo)數(shù):
- 端點處的二階導(dǎo)數(shù):
當(dāng)二階導(dǎo)數(shù)的兩端點值都為0時温圆,稱為自然邊界條件挨摸,樣條函數(shù)稱為自然樣條函數(shù)- 若
f(x)
是周期函數(shù),且xn-x0
是一個周期岁歉,則要求S(x)
也是周期函數(shù):
整個例題理解一下:
這種題的解法圍繞定義下手得运,S(x)
需滿足在作用域內(nèi)二階連續(xù)可導(dǎo),且一階和二階導(dǎo)函數(shù)連續(xù)锅移,帶入即可熔掺。
接下來講講三次樣條插值函數(shù)的計算方法
三轉(zhuǎn)角方法(題目中給的是端點一階導(dǎo)數(shù)):
這是由分段Hermit推來的式子瞬女,放在這幫助理解
具體的公式推導(dǎo)實在太麻煩,直接上干貨帆啃,先記幾個公式:其中h是劃分每一段的長度,為簡便計算努潘,引入三個已知量:這里的
mi
是樣條函數(shù)的一階導(dǎo)數(shù)诽偷,結(jié)合上面三個式子,就能得到mi
還是整個例題看看吧:
這里把區(qū)間分成三份疯坤,首先計算λ
报慕、μ
、g
压怠,由公式代入可得:這里不要被那個矩陣唬住了眠冈,想不明白為什么就帶入上面公式的最后一個求mi
,通過λ
、μ
蜗顽、g
解二元一次方程組布卡。
三彎矩方法(題目中給了端點的二階導(dǎo)數(shù))
記Mi
為S的二階導(dǎo)數(shù),則有:
再次引入λi
雇盖、μi
忿等、di
:
從而求解Mi:
再來個類似的例題:
同樣分為三份區(qū)間,帶入公式:
1.6 數(shù)據(jù)擬合的最小二乘法
這里就不過多證明崔挖,直接上例題尋找考點吧
解法過程如下:
- 先描點畫一個大概的草圖贸街,判斷函數(shù)的次數(shù),本題可以看出是一次
- 用冪函數(shù)擬合曲線狸相,即用g(x) = 1+x+x2+x3+····作為擬合多項式
- 結(jié)合給出的離散數(shù)據(jù)寫出向量薛匪,然后兩兩做內(nèi)積
其中系數(shù)分別為φ0
和φ0
內(nèi)積=8,φ0
和φ1
內(nèi)積=4脓鹃、φ1
和φ1
內(nèi)積44逸尖,φ0
和f
內(nèi)積=3.9,φ1
和f
內(nèi)積=46
再來一個題型:
這個題型的主要方法就是瘸右,把解方程組冷溶,轉(zhuǎn)化為求G(x,y)
的最小值,即每一項都為零的時候成立尊浓,進一步轉(zhuǎn)化成求偏導(dǎo):
最終求得的是近似解而非精確解。
習(xí)題
1.插值多項式的次數(shù)與插值節(jié)點的個數(shù)有關(guān)系纯衍。
正確
2.若n+1個插值節(jié)點互不相同栋齿,則滿足插值條件且不大于n次的插值多項式唯一存在
。
3.拉格朗日插值基函數(shù)滿足插值條件襟诸,lk(xi)= a,(i=k)
;lk(xi)= b,(i≠k)
瓦堵。則a=1
,b=0
歌亲。
4.用拉格朗日插值法求插值多項式就是對應(yīng)節(jié)點xk的基函數(shù)lk(x)與相應(yīng)節(jié)點函數(shù)值yk乘積之和菇用。正確
5.插值多項式余項中的ζ與x無關(guān)。錯誤
1.Newton插值法的插值基函數(shù)既有與節(jié)點相關(guān)又有升冪的特點陷揪,從而改進了拉格朗日插值不具有繼承性的不足惋鸥。
正確
2.差商f[x0,x1,x2] = f[x1,x0,x2] = f[x1,x2,x0]。正確
3.插值節(jié)點從x0到xn悍缠,對節(jié)點重新排列之后卦绣,對應(yīng)的Newton插值是否相等?相等
4.n+1個節(jié)點的拉格朗日插值多項式與牛頓插值多項式只是表現(xiàn)形式不同飞蚓,實質(zhì)上是等價的滤港。正確
5.Newton插值多項式中,每增加一個插值節(jié)點趴拧,所有的差商值都需要重新計算溅漾。錯誤
1.Runge現(xiàn)象產(chǎn)生的原因是插值節(jié)點不多山叮。
錯誤
2.插值多項式的余項隨著節(jié)點的增多而在某些點可能產(chǎn)生激烈的震蕩
3.分段線性插值克服了高次插值多項式誤差可能產(chǎn)生震蕩的不足,但分段線性插值函數(shù)在整個插值區(qū)間上只能保證連續(xù)添履,但不連續(xù)可導(dǎo)
屁倔。
4.三次樣條插值函數(shù)S(x)是分段函數(shù)。
5.三次樣條插值要求插值函數(shù)在整個插值區(qū)間上都是三階連續(xù)可導(dǎo)缝龄。錯誤
6.已知相同的離散數(shù)據(jù)汰现,插值和逼近(擬合)可獲得相同的函數(shù)表達(dá)式。錯誤
7.用最小二乘法進行數(shù)據(jù)擬合時叔壤,獲得的正則線性方程組的系數(shù)矩陣是對稱矩陣瞎饲。正確
書后題:
后記
這一章太難了,太難了炼绘,加油兄弟們