cnn中實現(xiàn)attention主要是有Sparial Domain和Channel Domain
soft-attention是可微的晦炊,可以通過梯度來實現(xiàn)
import torch
import torch.nn as nn
import numpy as np
import math
class SelfAttention(nn.Module):
def __init__(self, hidden_size, num_attention_heads, dropout_prob):
"""
假設 hidden_size = 128, num_attention_heads = 8, dropout_prob = 0.2
即隱層維度為128逛绵,注意力頭設置為8個
"""
super(SelfAttention, self).__init__()
if hidden_size % num_attention_heads != 0: # 整除
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (hidden_size, num_attention_heads))
# 參數(shù)定義
self.num_attention_heads = num_attention_heads # 8
self.attention_head_size = int(hidden_size / num_attention_heads) # 16 每個注意力頭的維度
self.all_head_size = int(self.num_attention_heads * self.attention_head_size)
# all_head_size = 128 即等于hidden_size, 一般自注意力輸入輸出前后維度不變
# query, key, value 的線性變換(上述公式2)
self.query = nn.Linear(hidden_size, self.all_head_size) # 128, 128
self.key = nn.Linear(hidden_size, self.all_head_size)
self.value = nn.Linear(hidden_size, self.all_head_size)
# dropout
self.dropout = nn.Dropout(dropout_prob)
def transpose_for_scores(self, x):
# INPUT: x'shape = [bs, seqlen, hid_size] 假設hid_size=128
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) # [bs, seqlen, 8, 16]
x = x.view(*new_x_shape) #
return x.permute(0, 2, 1, 3) # [bs, 8, seqlen, 16]
def forward(self, hidden_states, attention_mask):
# eg: attention_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) shape=[bs, seqlen]
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) # [bs, 1, 1, seqlen] 增加維度
attention_mask = (1.0 - attention_mask) * -10000.0 # padding的token置為-10000忱辅,exp(-1w)=0
# 線性變換
mixed_query_layer = self.query(hidden_states) # [bs, seqlen, hid_size]
mixed_key_layer = self.key(hidden_states) # [bs, seqlen, hid_size]
mixed_value_layer = self.value(hidden_states) # [bs, seqlen, hid_size]
query_layer = self.transpose_for_scores(mixed_query_layer) # [bs, 8, seqlen, 16]
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer) # [bs, 8, seqlen, 16]
# Take the dot product between "query" and "key" to get the raw attention scores.
# 計算query與title之間的點積注意力分數(shù)途样,還不是權重(個人認為權重應該是和為1的概率分布)
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
# [bs, 8, seqlen, 16]*[bs, 8, 16, seqlen] ==> [bs, 8, seqlen, seqlen]
attention_scores = attention_scores / math.sqrt(self.attention_head_size) # [bs, 8, seqlen, seqlen]
# 除以根號注意力頭的數(shù)量蝎毡,可看原論文公式银还,防止分數(shù)過大,過大會導致softmax之后非0即1
attention_scores = attention_scores + attention_mask
# 加上mask,將padding所在的表示直接-10000
# 將注意力轉(zhuǎn)化為概率分布趁冈,即注意力權重
attention_probs = nn.Softmax(dim=-1)(attention_scores) # [bs, 8, seqlen, seqlen]
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# 矩陣相乘,[bs, 8, seqlen, seqlen]*[bs, 8, seqlen, 16] = [bs, 8, seqlen, 16]
context_layer = torch.matmul(attention_probs, value_layer) # [bs, 8, seqlen, 16]
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() # [bs, seqlen, 8, 16]
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) # [bs, seqlen, 128]
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer # [bs, seqlen, 128] 得到輸出
attention=SelfAttention(4,2,0.2)
x_in=torch.randn(3,5,4)
x_mask=torch.Tensor([[1,1,1,0,0],
[1,1,0,0,0],
[1,1,1,1,1],])
print(x_mask.shape)
x_out=attention(x_in,x_mask)