351. Android Unlock Patterns

Given an Android 3x3 key lock screen and two integers m and n, where 1 ≤ m ≤ n ≤ 9, count the total number of unlock patterns of the Android lock screen, which consist of minimum of m keys and maximum n keys.
Rules for a valid pattern:
Each pattern must connect at least m keys and at most n keys.
All the keys must be distinct.
If the line connecting two consecutive keys in the pattern passes through any other keys, the other keys must have previously selected in the pattern. No jumps through non selected key is allowed.
The order of keys used matters.

Explanation:

| 1 | 2 | 3 |
| 4 | 5 | 6 |
| 7 | 8 | 9 |

Invalid move: 4 - 1 - 3 - 6
Line 1 - 3 passes through key 2 which had not been selected in the pattern.
Invalid move: 4 - 1 - 9 - 2
Line 1 - 9 passes through key 5 which had not been selected in the pattern.
Valid move: 2 - 4 - 1 - 3 - 6
Line 1 - 3 is valid because it passes through key 2, which had been selected in the pattern
Valid move: 6 - 5 - 4 - 1 - 9 - 2
Line 1 - 9 is valid because it passes through key 5, which had been selected in the pattern.
Example:Given m = 1, n = 1, return 9.

一刷
題解:安卓機(jī)子的解鎖方法姐浮,有9個(gè)數(shù)字鍵箫柳,如果密碼的長度范圍在[m, n]之間是己,問所有的解鎖模式共有多少種,注意題目中給出的一些非法的滑動(dòng)模式。那么我們先來看一下哪些是非法的,首先1不能直接到3,必須經(jīng)過2,同理的有4到6记罚,7到9墅诡,1到7,2到8桐智,3到9末早,還有就是對(duì)角線必須經(jīng)過5,例如1到9说庭,3到7等然磷。我們建立一個(gè)二維數(shù)組jumps,用來記錄兩個(gè)數(shù)字鍵之間是否有中間鍵刊驴,然后再用一個(gè)一位數(shù)組visited來記錄某個(gè)鍵是否被訪問過姿搜,然后我們用遞歸來解,我們先對(duì)1調(diào)用遞歸函數(shù)捆憎,在遞歸函數(shù)中舅柜,我們遍歷1到9每個(gè)數(shù)字next,然后找他們之間是否有jump數(shù)字躲惰,如果next沒被訪問過致份,并且jump為0,或者jump被訪問過础拨,我們對(duì)next調(diào)用遞歸函數(shù)氮块。數(shù)字1的模式個(gè)數(shù)算出來后绍载,由于1,3,7,9是對(duì)稱的,所以我們乘4即可滔蝉,然后再對(duì)數(shù)字2調(diào)用遞歸函數(shù)击儡,2,4,6,9也是對(duì)稱的,再乘4锰提,最后單獨(dú)對(duì)5調(diào)用一次曙痘,然后把所有的加起來就是最終結(jié)果了。

public class Solution {
    // cur: the current position
    // remain: the steps remaining
    int DFS(boolean vis[], int[][] skip, int cur, int remain) {
        if(remain < 0) return 0;
        if(remain == 0) return 1;
        vis[cur] = true;
        int rst = 0;
        for(int i = 1; i <= 9; ++i) {
            // If vis[i] is not visited and (two numbers are adjacent or skip number is already visited)
            if(!vis[i] && (skip[cur][i] == 0 || (vis[skip[cur][i]]))) {
                rst += DFS(vis, skip, i, remain - 1);
            }
        }
        vis[cur] = false;
        return rst;
    }
    
    public int numberOfPatterns(int m, int n) {
        // Skip array represents number to skip between two pairs
        int skip[][] = new int[10][10];
        skip[1][3] = skip[3][1] = 2;
        skip[1][7] = skip[7][1] = 4;
        skip[3][9] = skip[9][3] = 6;
        skip[7][9] = skip[9][7] = 8;
        skip[1][9] = skip[9][1] = skip[2][8] = skip[8][2] = skip[3][7] = skip[7][3] = skip[4][6] = skip[6][4] = 5;
        boolean vis[] = new boolean[10];
        int rst = 0;
        // DFS search each length from m to n
        for(int i = m; i <= n; ++i) {
            rst += DFS(vis, skip, 1, i - 1) * 4;    // 1, 3, 7, 9 are symmetric
            rst += DFS(vis, skip, 2, i - 1) * 4;    // 2, 4, 6, 8 are symmetric
            rst += DFS(vis, skip, 5, i - 1);        // 5
        }
        return rst;
    }
}

二刷

另一種寫法立肘,同樣是DFS+backtracking

class Solution {
    public int numberOfPatterns(int m, int n) {
        boolean[] visited = new boolean[10];
        visited[0] = true;
        
        int[][] jumps = new int[10][10];
        jumps[1][3] = jumps[3][1] = 2;
        jumps[1][7] = jumps[7][1] = 4;
        jumps[7][9] = jumps[9][7] = 8;
        jumps[9][3] = jumps[3][9] = 6;
        jumps[4][6] = jumps[6][4] = jumps[2][8] = jumps[8][2] = jumps[1][9] = jumps[9][1] = jumps[3][7] = jumps[7][3] = 5;
        
        int count = 0;
        count += 4 * dfs(1, 1, 0, m, n, visited, jumps);
        count += 4 * dfs(2, 1, 0, m, n, visited, jumps);
        count += dfs(5, 1, 0, m, n, visited, jumps);
        return count;
    }
    private int dfs(int num, int len, int count, int m, int n, boolean[] visited, int[][] jumps) {
        if (len >= m) count++;
        len++;
        if (len > n) return count;
        
        visited[num] = true;
        for (int next = 1; next <= 9; next++) {
            if (!visited[next] && (jumps[num][next] == 0 || visited[jumps[num][next]])) {
                count = dfs(next, len, count, m, n, visited, jumps);
            }
        }
        visited[num] = false;
        return count;
    }
}
最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末边坤,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子谅年,更是在濱河造成了極大的恐慌茧痒,老刑警劉巖,帶你破解...
    沈念sama閱讀 217,907評(píng)論 6 506
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件融蹂,死亡現(xiàn)場(chǎng)離奇詭異旺订,居然都是意外死亡,警方通過查閱死者的電腦和手機(jī)超燃,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 92,987評(píng)論 3 395
  • 文/潘曉璐 我一進(jìn)店門区拳,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人意乓,你說我怎么就攤上這事樱调。” “怎么了届良?”我有些...
    開封第一講書人閱讀 164,298評(píng)論 0 354
  • 文/不壞的土叔 我叫張陵笆凌,是天一觀的道長。 經(jīng)常有香客問我士葫,道長乞而,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 58,586評(píng)論 1 293
  • 正文 為了忘掉前任慢显,我火速辦了婚禮爪模,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘荚藻。我一直安慰自己呻右,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,633評(píng)論 6 392
  • 文/花漫 我一把揭開白布鞋喇。 她就那樣靜靜地躺著声滥,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上落塑,一...
    開封第一講書人閱讀 51,488評(píng)論 1 302
  • 那天纽疟,我揣著相機(jī)與錄音,去河邊找鬼憾赁。 笑死污朽,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的龙考。 我是一名探鬼主播蟆肆,決...
    沈念sama閱讀 40,275評(píng)論 3 418
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場(chǎng)噩夢(mèng)啊……” “哼晦款!你這毒婦竟也來了炎功?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 39,176評(píng)論 0 276
  • 序言:老撾萬榮一對(duì)情侶失蹤缓溅,失蹤者是張志新(化名)和其女友劉穎蛇损,沒想到半個(gè)月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體坛怪,經(jīng)...
    沈念sama閱讀 45,619評(píng)論 1 314
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡淤齐,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,819評(píng)論 3 336
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了袜匿。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片更啄。...
    茶點(diǎn)故事閱讀 39,932評(píng)論 1 348
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖居灯,靈堂內(nèi)的尸體忽然破棺而出祭务,到底是詐尸還是另有隱情,我是刑警寧澤穆壕,帶...
    沈念sama閱讀 35,655評(píng)論 5 346
  • 正文 年R本政府宣布待牵,位于F島的核電站其屏,受9級(jí)特大地震影響喇勋,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜偎行,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,265評(píng)論 3 329
  • 文/蒙蒙 一川背、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧蛤袒,春花似錦熄云、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 31,871評(píng)論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春练般,著一層夾襖步出監(jiān)牢的瞬間矗漾,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 32,994評(píng)論 1 269
  • 我被黑心中介騙來泰國打工薄料, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留敞贡,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 48,095評(píng)論 3 370
  • 正文 我出身青樓摄职,卻偏偏與公主長得像誊役,于是被迫代替她去往敵國和親。 傳聞我的和親對(duì)象是個(gè)殘疾皇子谷市,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 44,884評(píng)論 2 354

推薦閱讀更多精彩內(nèi)容