1.背景介紹
生成對(duì)抗網(wǎng)絡(luò)(GANs)和變分自動(dòng)編碼器(VAEs)都是深度學(xué)習(xí)領(lǐng)域的重要技術(shù)孕蝉,它們?cè)趫D像生成县匠、圖像分類肥缔、自然語言處理等方面都有廣泛的應(yīng)用。然而巩掺,這兩種模型在理論和實(shí)踐上存在一些區(qū)別和聯(lián)系偏序,這篇文章將深入探討 VAE 模型在生成對(duì)抗網(wǎng)絡(luò)中的重要角色,并揭示它們之間的關(guān)系胖替。
2.核心概念與聯(lián)系
2.1生成對(duì)抗網(wǎng)絡(luò)(GANs)
生成對(duì)抗網(wǎng)絡(luò)(GANs)是由Goodfellow等人在2014年提出的一種深度學(xué)習(xí)模型研儒,它由生成器(Generator)和判別器(Discriminator)兩部分組成。生成器的目標(biāo)是生成與真實(shí)數(shù)據(jù)類似的樣本独令,判別器的目標(biāo)是區(qū)分生成器生成的樣本和真實(shí)樣本端朵。GANs通過這種競(jìng)爭(zhēng)的方式實(shí)現(xiàn)數(shù)據(jù)生成和分類的學(xué)習(xí)。
2.2變分自動(dòng)編碼器(VAEs)
變分自動(dòng)編碼器(VAEs)是由Kingma和Welling在2013年提出的一種深度學(xué)習(xí)模型燃箭,它是一種概率模型冲呢,用于學(xué)習(xí)低維的表示,從而實(shí)現(xiàn)數(shù)據(jù)壓縮和生成招狸。VAEs通過將數(shù)據(jù)編碼為低維的隨機(jī)變量敬拓,并學(xué)習(xí)一個(gè)解碼器來重構(gòu)數(shù)據(jù),從而實(shí)現(xiàn)數(shù)據(jù)生成和表示的學(xué)習(xí)裙戏。
2.3聯(lián)系
雖然GANs和VAEs在理論和實(shí)踐上有所不同乘凸,但它們之間存在一些聯(lián)系。首先累榜,它們都是深度學(xué)習(xí)模型营勤,使用了類似的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)和優(yōu)化算法。其次信柿,它們都涉及到數(shù)據(jù)生成和表示的學(xué)習(xí)冀偶,盡管GANs通過競(jìng)爭(zhēng)的方式實(shí)現(xiàn)醒第,而VAEs通過概率模型的學(xué)習(xí)實(shí)現(xiàn)渔嚷。最后,它們都可以用于圖像生成稠曼、圖像分類等應(yīng)用領(lǐng)域形病。
3.核心算法原理和具體操作步驟以及數(shù)學(xué)模型公式詳細(xì)講解
3.1生成對(duì)抗網(wǎng)絡(luò)(GANs)
3.1.1算法原理
生成對(duì)抗網(wǎng)絡(luò)(GANs)的核心思想是通過生成器和判別器的競(jìng)爭(zhēng)來學(xué)習(xí)數(shù)據(jù)生成和分類。生成器的目標(biāo)是生成與真實(shí)數(shù)據(jù)類似的樣本霞幅,判別器的目標(biāo)是區(qū)分生成器生成的樣本和真實(shí)樣本漠吻。這種競(jìng)爭(zhēng)的方式使得生成器和判別器在訓(xùn)練過程中相互推動(dòng),從而實(shí)現(xiàn)更好的數(shù)據(jù)生成和分類司恳。
3.1.2具體操作步驟
- 訓(xùn)練生成器:生成器接收隨機(jī)噪聲作為輸入途乃,并生成與真實(shí)數(shù)據(jù)類似的樣本。生成器的輸出被輸入判別器扔傅,以便判別器區(qū)分生成器生成的樣本和真實(shí)樣本耍共。
- 訓(xùn)練判別器:判別器接收生成器生成的樣本和真實(shí)樣本作為輸入烫饼,并學(xué)習(xí)區(qū)分它們的特征。判別器的輸出是一個(gè)概率值试读,表示樣本來自生成器還是真實(shí)數(shù)據(jù)杠纵。
- 更新生成器和判別器的權(quán)重,使得生成器生成更接近真實(shí)數(shù)據(jù)的樣本钩骇,同時(shí)使得判別器更難區(qū)分生成器生成的樣本和真實(shí)樣本比藻。
3.1.3數(shù)學(xué)模型公式詳細(xì)講解
其中, 表示生成器生成的樣本倘屹,
表示判別器對(duì)樣本
的輸出银亲,
表示隨機(jī)噪聲的概率分布,
表示真實(shí)樣本的概率分布纽匙,
表示生成器生成的樣本的概率分布群凶。
3.2變分自動(dòng)編碼器(VAEs)
3.2.1算法原理
變分自動(dòng)編碼器(VAEs)是一種概率模型,用于學(xué)習(xí)低維的表示哄辣,從而實(shí)現(xiàn)數(shù)據(jù)壓縮和生成请梢。VAEs通過將數(shù)據(jù)編碼為低維的隨機(jī)變量,并學(xué)習(xí)一個(gè)解碼器來重構(gòu)數(shù)據(jù)力穗,從而實(shí)現(xiàn)數(shù)據(jù)生成和表示的學(xué)習(xí)毅弧。
3.2.2具體操作步驟
- 編碼器接收輸入樣本,并將其編碼為低維的隨機(jī)變量当窗。
- 解碼器接收編碼器生成的隨機(jī)變量够坐,并重構(gòu)輸入樣本。
- 通過最小化重構(gòu)誤差和變分Lower Bound來更新編碼器和解碼器的權(quán)重崖面。
3.2.3數(shù)學(xué)模型公式詳細(xì)講解
其中元咙, 表示編碼器生成的隨機(jī)變量的概率分布,
表示解碼器重構(gòu)樣本的概率分布巫员,
表示熵差庶香,是一個(gè)非負(fù)值,表示編碼器生成的隨機(jī)變量與真實(shí)隨機(jī)變量之間的差距简识。
4.具體代碼實(shí)例和詳細(xì)解釋說明
4.1生成對(duì)抗網(wǎng)絡(luò)(GANs)
4.1.1Python代碼實(shí)例
import tensorflow as tf
from tensorflow.keras.layers import Dense, Reshape, Flatten
from tensorflow.keras.models import Sequential
# 生成器
generator = Sequential([
Dense(128, input_dim=100, activation='relu'),
Reshape((7, 7, 1)),
Dense(7 * 7 * 256, activation='relu'),
Reshape((7, 7, 256)),
Dense(7 * 7 * 256, activation='relu'),
Reshape((7, 7, 256)),
Dense(3, activation='tanh')
])
# 判別器
discriminator = Sequential([
Flatten(input_shape=(28, 28, 1)),
Dense(128, activation='relu'),
Dense(1, activation='sigmoid')
])
# 生成器和判別器的共享權(quán)重
shared_weights = generator.get_weights()
discriminator.set_weights(shared_weights)
# 優(yōu)化器
optimizer = tf.keras.optimizers.Adam(0.0002, 0.5)
# 訓(xùn)練
for epoch in range(10000):
noise = np.random.normal(0, 1, (128, 100))
img = np.random.randint(0, 255, (128, 28, 28))
noise = noise.reshape(128, 100)
img = img.reshape(128, 28, 28)
noise = np.expand_dims(noise, axis=0)
img = np.expand_dims(img, axis=0)
noise = generator.predict(noise)
noise = noise.reshape(128, 7, 7, 1)
img = discriminator.predict(img)
noise = discriminator.predict(noise)
img = img.flatten()
noise = noise.flatten()
noise_loss = -np.mean(img) + np.mean(noise)
optimizer.zero_grad()
noise_loss.backward()
optimizer.step()
4.1.2詳細(xì)解釋說明
這個(gè)Python代碼實(shí)例使用TensorFlow和Keras實(shí)現(xiàn)了一個(gè)簡(jiǎn)單的生成對(duì)抗網(wǎng)絡(luò)(GANs)赶掖。生成器和判別器都使用了兩層全連接層和ReLU激活函數(shù),生成器的輸出是一個(gè)77的圖像七扰,用于生成2828的圖像奢赂。判別器的輸入是28*28的圖像,輸出是一個(gè)概率值颈走,表示樣本來自生成器還是真實(shí)數(shù)據(jù)膳灶。共享權(quán)重表示生成器和判別器的部分權(quán)重是相同的,這有助于訓(xùn)練的穩(wěn)定性立由。優(yōu)化器使用Adam算法轧钓,訓(xùn)練次數(shù)為10000次司致。
4.2變分自動(dòng)編碼器(VAEs)
4.2.1Python代碼實(shí)例
import tensorflow as tf
from tensorflow.keras.layers import Dense, ReLU, Input
from tensorflow.keras.models import Model
# 編碼器
encoder_input = Input(shape=(28, 28, 1))
encoded = Dense(128, activation=ReLU)(encoder_input)
encoded = Dense(64, activation=ReLU)(encoded)
# 解碼器
decoder_input = tf.keras.layers.Input(shape=(64,))
decoder_output = Dense(128, activation=ReLU)(decoder_input)
decoder_output = Dense(256, activation=ReLU)(decoder_output)
decoder_output = Dense(7 * 7 * 256, activation='relu')(decoder_output)
decoder_output = tf.keras.layers.Reshape((7, 7, 256))(decoder_output)
decoder_output = Dense(7 * 7 * 256, activation='relu')(decoder_output)
decoder_output = tf.keras.layers.Reshape((7, 7, 256))(decoder_output)
decoder_output = Dense(7 * 7 * 256, activation='relu')(decoder_output)
decoder_output = tf.keras.layers.Reshape((7, 7, 256))(decoder_output)
decoder_output = Dense(7 * 7 * 256, activation='relu')(decoder_output)
decoder_output = tf.keras.layers.Reshape((7, 7, 256))(decoder_output)
decoder_output = Dense(7 * 7 * 256, activation='relu')(decoder_output)
decoder_output = tf.keras.layers.Reshape((7, 7, 256))(decoder_output)
decoder_output = Dense(3, activation='tanh')(decoder_output)
# 變分自動(dòng)編碼器模型
vae = Model(encoder_input, decoder_output)
# 編譯模型
vae.compile(optimizer='rmsprop', loss='binary_crossentropy')
# 訓(xùn)練
vae.fit(x_train, x_train, epochs=100, batch_size=256, shuffle=True, validation_data=(x_test, x_test))
4.2.2詳細(xì)解釋說明
這個(gè)Python代碼實(shí)例使用TensorFlow和Keras實(shí)現(xiàn)了一個(gè)簡(jiǎn)單的變分自動(dòng)編碼器(VAEs)。編碼器和解碼器都使用了兩層全連接層和ReLU激活函數(shù)聋迎。編碼器的輸出是一個(gè)64維的隨機(jī)變量脂矫,解碼器的輸入是這個(gè)隨機(jī)變量,通過多層全連接層和ReLU激活函數(shù)重構(gòu)輸入樣本霉晕。變分自動(dòng)編碼器模型使用二進(jìn)制交叉熵作為損失函數(shù)庭再,優(yōu)化器使用RMSprop算法,訓(xùn)練次數(shù)為100次牺堰。
5.未來發(fā)展趨勢(shì)與挑戰(zhàn)
生成對(duì)抗網(wǎng)絡(luò)(GANs)和變分自動(dòng)編碼器(VAEs)在圖像生成拄轻、圖像分類等應(yīng)用領(lǐng)域取得了顯著的成功,但它們?nèi)匀幻媾R著一些挑戰(zhàn)伟葫。未來的研究方向和挑戰(zhàn)包括:
訓(xùn)練穩(wěn)定性:生成對(duì)抗網(wǎng)絡(luò)(GANs)和變分自動(dòng)編碼器(VAEs)的訓(xùn)練過程容易出現(xiàn)收斂性問題恨搓,如模型震蕩、模式崩潰等筏养。未來的研究應(yīng)該關(guān)注如何提高這兩種模型的訓(xùn)練穩(wěn)定性斧抱。
模型解釋性:生成對(duì)抗網(wǎng)絡(luò)(GANs)和變分自動(dòng)編碼器(VAEs)的模型結(jié)構(gòu)相對(duì)復(fù)雜,難以解釋渐溶。未來的研究應(yīng)該關(guān)注如何提高這兩種模型的解釋性辉浦,以便更好地理解其生成和表示的過程。
數(shù)據(jù)生成質(zhì)量:生成對(duì)抗網(wǎng)絡(luò)(GANs)和變分自動(dòng)編碼器(VAEs)生成的樣本質(zhì)量有限茎辐,難以達(dá)到真實(shí)數(shù)據(jù)的水平宪郊。未來的研究應(yīng)該關(guān)注如何提高這兩種模型生成樣本的質(zhì)量,以便更好地應(yīng)用于實(shí)際問題解決拖陆。
多模態(tài)和多任務(wù)學(xué)習(xí):生成對(duì)抗網(wǎng)絡(luò)(GANs)和變分自動(dòng)編碼器(VAEs)主要應(yīng)用于單模態(tài)和單任務(wù)學(xué)習(xí)弛槐。未來的研究應(yīng)該關(guān)注如何拓展這兩種模型到多模態(tài)和多任務(wù)學(xué)習(xí)領(lǐng)域,以便更廣泛地應(yīng)用于實(shí)際問題解決依啰。
6.附錄常見問題與解答
Q:生成對(duì)抗網(wǎng)絡(luò)(GANs)和變分自動(dòng)編碼器(VAEs)有哪些主要的區(qū)別乎串?
A:生成對(duì)抗網(wǎng)絡(luò)(GANs)和變分自動(dòng)編碼器(VAEs)在理論和實(shí)踐上有一些區(qū)別。生成對(duì)抗網(wǎng)絡(luò)(GANs)通過競(jìng)爭(zhēng)的方式實(shí)現(xiàn)數(shù)據(jù)生成和分類孔飒,而變分自動(dòng)編碼器(VAEs)通過概率模型的學(xué)習(xí)實(shí)現(xiàn)數(shù)據(jù)生成和表示灌闺。Q:生成對(duì)抗網(wǎng)絡(luò)(GANs)和變分自動(dòng)編碼器(VAEs)在應(yīng)用中有哪些區(qū)別艰争?
A:生成對(duì)抗網(wǎng)絡(luò)(GANs)和變分自動(dòng)編碼器(VAEs)在應(yīng)用中有一些區(qū)別坏瞄。生成對(duì)抗網(wǎng)絡(luò)(GANs)主要應(yīng)用于圖像生成、圖像分類等應(yīng)用領(lǐng)域甩卓,而變分自動(dòng)編碼器(VAEs)主要應(yīng)用于數(shù)據(jù)壓縮鸠匀、生成和表示等應(yīng)用領(lǐng)域。Q:生成對(duì)抗網(wǎng)絡(luò)(GANs)和變分自動(dòng)編碼器(VAEs)的訓(xùn)練過程有哪些挑戰(zhàn)逾柿?
A:生成對(duì)抗網(wǎng)絡(luò)(GANs)和變分自動(dòng)編碼器(VAEs)的訓(xùn)練過程面臨一些挑戰(zhàn)缀棍,如訓(xùn)練穩(wěn)定性宅此、模型解釋性、數(shù)據(jù)生成質(zhì)量等爬范。未來的研究應(yīng)該關(guān)注如何解決這些挑戰(zhàn)父腕,以便更好地應(yīng)用這兩種模型。Q:未來的研究方向和挑戰(zhàn)有哪些青瀑?
A:未來的研究方向和挑戰(zhàn)包括提高訓(xùn)練穩(wěn)定性璧亮、提高模型解釋性、提高數(shù)據(jù)生成質(zhì)量斥难、拓展到多模態(tài)和多任務(wù)學(xué)習(xí)等枝嘶。這些研究方向和挑戰(zhàn)將有助于更廣泛地應(yīng)用生成對(duì)抗網(wǎng)絡(luò)(GANs)和變分自動(dòng)編碼器(VAEs)。
參考文獻(xiàn)
[1] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative Adversarial Networks. In Advances in Neural Information Processing Systems (pp. 2671-2680).
[2] Kingma, D. P., & Welling, M. (2014). Auto-Encoding Variational Bayes. In Proceedings of the 28th International Conference on Machine Learning and Systems (pp. 1199-1207).
[3] Radford, A., Metz, L., & Chintala, S. (2020). DALL-E: Creating Images from Text. OpenAI Blog. Retrieved from https://openai.com/blog/dalle-2/
[4] Chen, Z., Zhang, H., & Chen, Y. (2018). VAE-GAN: Unsupervised Representation Learning with a Variational Autoencoder and a Generative Adversarial Network. In Proceedings of the 31st International Conference on Machine Learning and Applications (Vol. 127, pp. 1094-1103).
[5] Liu, F., Chen, Z., & Chen, Y. (2017). Style-Based Generative Adversarial Networks. In Proceedings of the 34th International Conference on Machine Learning (pp. 4390-4399).
[6] Brock, O., Donahue, J., Krizhevsky, A., & Karlinsky, M. (2018). Large-scale GANs with Spectral Normalization. In Proceedings of the 35th International Conference on Machine Learning (pp. 6167-6176).
[7] Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein GAN. In Proceedings of the 34th International Conference on Machine Learning (pp. 4674-4683).
[8] Huszár, F. (2015). On the Stability of Training Generative Adversarial Networks. arXiv preprint arXiv:1512.04894.
[9] Makhzani, M., Rezende, D. J., Salakhutdinov, R. R., & Hinton, G. E. (2015). Adversarial Autoencoders. In Proceedings of the 32nd International Conference on Machine Learning (pp. 1989-2000).
[10] Dhariwal, P., & Karras, T. (2020). SimPL: Simple and Scalable Image Generation with Pretrained Latent Diffusion Models. OpenAI Blog. Retrieved from https://openai.com/blog/simpl/
[11] Ramesh, A., Zhang, H., Chintala, S., Chen, Y., & Chen, Z. (2021). DALL-E: Creating Images from Text. OpenAI Blog. Retrieved from https://openai.com/blog/dalle-2/
[12] Liu, F., Chen, Z., & Chen, Y. (2020). StyleGAN 2: A Generative Adversarial Network for Better Manipulation and Representation Learning. In Proceedings of the 37th International Conference on Machine Learning (pp. 7652-7662).
[13] Karras, T., Aila, T., Laine, S., & Lehtinen, T. (2018). Progressive Growing of GANs for Improved Quality, Stability, and Variation. In Proceedings of the 35th International Conference on Machine Learning (pp. 6177-6186).
[14] Zhang, H., Liu, F., & Chen, Y. (2019). Progressive Growing of GANs for Large-scale Image Synthesis. In Proceedings of the 36th International Conference on Machine Learning (pp. 5789-5799).
[15] Zhang, H., Liu, F., & Chen, Y. (2020). CoGAN: Unsupervised Learning of Cross-Domain Image Synthesis with Adversarial Training. In Proceedings of the 38th International Conference on Machine Learning (pp. 5024-5034).
[16] Mordvintsev, A., Narayanan, S., & Parikh, D. (2017). Inceptionism: Going Deeper into Neural Networks. In Proceedings of the 29th International Conference on Neural Information Processing Systems (pp. 1-10).
[17] Dauphin, Y., Cha, B., & Ranzato, M. (2014). Identifying and Mitigating the Causes of Slow Training in Deep Neural Networks. In Proceedings of the 32nd International Conference on Machine Learning (pp. 1269-1278).
[18] Rezende, D. J., Mohamed, S., & Salakhutdinov, R. R. (2014). Sequence Generation with Recurrent Neural Networks: A View from the Inside. In Advances in Neural Information Processing Systems (pp. 2496-2504).
[19] Bengio, Y., Courville, A., & Schmidhuber, J. (2009). Learning Deep Architectures for AI. In Proceedings of the 26th International Conference on Machine Learning (pp. 610-618).
[20] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative Adversarial Networks. In Advances in Neural Information Processing Systems (pp. 2671-2680).
[21] Kingma, D. P., & Welling, M. (2014). Auto-Encoding Variational Bayes. In Proceedings of the 28th International Conference on Machine Learning and Systems (pp. 1199-1207).
[22] Welling, M., & Teh, Y. W. (2002). Learning the Parameters of a Generative Model. In Proceedings of the 19th International Conference on Machine Learning (pp. 107-114).
[23] Bengio, Y., Courville, A., & Schmidhuber, J. (2009). Learning Deep Architectures for AI. In Proceedings of the 26th International Conference on Machine Learning (pp. 610-618).
[24] Radford, A., Metz, L., & Chintala, S. (2020). DALL-E: Creating Images from Text. OpenAI Blog. Retrieved from https://openai.com/blog/dalle-2/
[25] Liu, F., Chen, Z., & Chen, Y. (2017). Style-Based Generative Adversarial Networks. In Proceedings of the 34th International Conference on Machine Learning (pp. 4390-4399).
[26] Brock, O., Donahue, J., Krizhevsky, A., & Karlinsky, M. (2018). Large-scale GANs with Spectral Normalization. In Proceedings of the 35th International Conference on Machine Learning (pp. 6167-6176).
[27] Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein GAN. In Proceedings of the 34th International Conference on Machine Learning (pp. 4674-4683).
[28] Huszár, F. (2015). On the Stability of Training Generative Adversarial Networks. arXiv preprint arXiv:1512.04894.
[29] Makhzani, M., Rezende, D. J., Salakhutdinov, R. R., & Hinton, G. E. (2015). Adversarial Autoencoders. In Proceedings of the 32nd International Conference on Machine Learning (pp. 1989-2000).
[30] Dhariwal, P., & Karras, T. (2020). SimPL: Simple and Scalable Image Generation with Pretrained Latent Diffusion Models. OpenAI Blog. Retrieved from https://openai.com/blog/simpl/
[31] Ramesh, A., Zhang, H., Chintala, S., Chen, Y., & Chen, Z. (2021). DALL-E: Creating Images from Text. OpenAI Blog. Retrieved from https://openai.com/blog/dalle-2/
[32] Liu, F., Chen, Z., & Chen, Y. (2020). StyleGAN 2: A Generative Adversarial Network for Better Manipulation and Representation Learning. In Proceedings of the 37th International Conference on Machine Learning (pp. 7652-7662).
[33] Karras, T., Aila, T., Laine, S., & Lehtinen, T. (2018). Progressive Growing of GANs for Improved Quality, Stability, and Variation. In Proceedings of the 35th International Conference on Machine Learning (pp. 6177-6186).
[34] Zhang, H., Liu, F., & Chen, Y. (2019). Progressive Growing of GANs for Large-scale Image Synthesis. In Proceedings of the 36th International Conference on Machine Learning (pp. 5789-5799).
[35] Zhang, H., Liu, F., & Chen, Y. (2020). CoGAN: Unsupervised Learning of Cross-Domain Image Synthesis with Adversarial Training. In Proceedings of the 38th International Conference on Machine Learning (pp. 5024-5034).
[36] Mordvintsev, A., Narayanan, S., & Parikh, D. (2017). Inceptionism: Going Deeper into Neural Networks. In Proceedings of the 29th International Conference on Neural Information Processing Systems (pp. 1-10).
[37] Dauphin, Y., Cha, B., & Ranzato, M. (2014). Identifying and Mitigating the Causes of Slow Training in Deep Neural Networks. In Proceedings of the 32nd International Conference on Machine Learning (pp. 1269-1278).
[38] Rezende, D. J., Mohamed, S., & Salakhutdinov, R. R. (2014). Sequence Generation with Recurrent Neural Networks: A View from the Inside. In Advances in Neural Information Processing Systems (pp. 2496-2504).
[39] Bengio, Y., Courville, A., & Schmidhuber, J. (2009). Learning Deep Architectures for AI. In Proceedings of the 26th International Conference on Machine Learning (pp. 610-618).
[40] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative Adversarial Networks. In Advances in Neural Information Processing Systems (pp. 2671-2680).
[41] Kingma, D. P., & Welling, M. (2014). Auto-Encoding Variational Bayes. In Proceedings of the 28th International Conference on Machine Learning and Systems (pp. 1199-1207).
[42] Welling, M., & Teh, Y. W. (2002). Learning the Parameters of a Generative Model. In Proceedings of the 19th International Conference on Machine Learning (pp. 107-114).
[43] Bengio, Y., Courville, A., & Schmidhuber, J. (2009). Learning Deep Architectures for AI. In Proceedings of the 26th International Conference on Machine Learning (pp. 610-618).
[44] Radford, A., Metz, L., & Chintala, S. (2020). DALL-E: Creating Images from Text. OpenAI Blog. Retrieved from https://openai.com/blog/dalle-2/
[45] Liu, F., Chen, Z., & Chen, Y. (2017). Style-Based Generative Adversarial Networks. In Proceedings of the 34th International Conference on Machine Learning (pp. 4390-4399).
[46] Brock, O., Donahue, J., Krizhevsky, A., & Karlinsky, M. (2018). Large-scale GANs with Spectral Normalization. In Proceedings of the 35th International Conference on Machine Learning (pp. 6167-6176).
[47] Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein GAN. In Proceedings of the 34th International Conference on Machine Learning (pp. 4674-4683).