Slides for 12.20 Presentation

Slides for 12.20 Persentation

Page 1

  • Hello, Every one, this is Setsu. In this video, I will mainly talk about the Architecture of my proposed method.

Page 2

  • Here is the Outline of this video. It contains 3 parts, First is The OneMax Problem on Genetic Algorithm, it's a very simple use case of genetic algorithm. The second part is the Architecture of my proposed method, in this part, I will talk the parallel strategy and some program flow chart of my proposed method. The last part is Future work

Page 3

  • At the begining, I will simplely introduce the OneMax Problem on Genetic Algorithm.
  • OneMax Problem's final goal is find the Max individual, which is all of one, from some initial individuals which are made up by a series of 0 and 1.
  • Let us see the whole processes. First, there is a initial population with a number of individuals and the fitness of each individual is the total 1 number of the individual. Afer some genetic operations such as crossover, mutation and selection, there will be new generation population, then do the next genetic operations until it find the max individual which is all of 1
  • The simple example is usually used to test the efficient of genetic algorithm, so I try to run this genetic algorithm on spark to test the efficient and performance

Page 4

  • I found a OmeMax code on the Internet and modified the code into Spark way
  • Then I Run the modified demo on the spark cluster
  • But I only run it on local mode successfully, the local mode means run the mode just on ome machine. When I run it on the cluster model it has some connection timeout bugs, so I still debugging and tuning the demo, and I will summary the tuning and debugging experiences later)

Page 5

  • The next part is the Architecture of my proposed method. So First let's the pervious review
  • I'm focusing on the WITF model, Which named Weight Irregular Tensor factorization.
  • The model uses crossdomain data to do the recommendation. It consider crossdomain data as a Irregular tensor then do the tensor factorization. But the tensor must be regular tensor when do tensor factorization, so the Irregular tensor must transfer into regular tensor. and the most important point is to minimize the lost when do the transfer. Therefore it need to find a optimal weights configuration over domains wk to minimize the loss.
  • My proposed method is to find the optimal weights configuration by genetic algorithm instead of the empirical strategy the model used currently

Page 6

  • The parallel strategy of my proposed method is refered to a paper which published in 2017. This paper use genetic algorithm on spark to find optimal test case.
  • The paper proposed a two-phase parallelization. It contains parallel fitness evaluation and parallel genetic operations during the whole processes
  • When do parallel fitness evaluation, it computes each individual's fitness value parallel. When do parallel Genetic operations, it dose each crossover, mutation and selection parallel.
  • With Using this two-phase parallel strategy on spark, it speed up significantly

Page 7

  • Next is the genetic algorithm for my proprsed method. In details, Each individual is one possible configuration of weights over domains
  • The genetic operations can be executed on Spark parallely and the fitness evaluation part is WITF model, it use large datasets, and it adpots parallel strategy inside.
  • After it iterate a numbers of generations it could find the one better configuration of weights over domains

Page 8

    • Next is the details of the WITF model
  • the model use crossdomain data to computer user vectors, Domains vectors and Virtual item vectors.
  • During the processes, some vectors can be compute parallely, for example the each user's vetor can be updated parallel, because it's conditional indepence with other users. the Domian vectors and the constrict vectors have the simliar situation as user vectors, they all can be update parallely
  • After get those vector, The model will use the common measurement RMSE to computer the accuracy, then the accuracy will be the fitness value.

Page 9

  • Combine with WITF and Genetic algorithm on spark using the two-phase parallelization will be a problem, which name Spark RDD Nested
  • The best situation is consider each individual as a spark RDD element and then executed each individual's fitness evaluation parallely on spark, but the fitness function WITF model will also use Spark RDD inside
  • So it has Spark RDD Nested, but Spark RDD do not support nested, I have to find an alternative which is Evaluate fitness sequentially ont parallely , the efficient depends on the speed of WITF on Spark and it needs to consider further

Here is my presentation video link, the video is short due to less research progress. Sorry.

Summary

  1. Modified a genetic algorithm by using Spark and do some test
  2. The architecture of proposed method
最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市硝全,隨后出現(xiàn)的幾起案子缓溅,更是在濱河造成了極大的恐慌庐椒,老刑警劉巖蠢挡,帶你破解...
    沈念sama閱讀 222,729評論 6 517
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件凡辱,死亡現(xiàn)場離奇詭異拧簸,居然都是意外死亡寺旺,警方通過查閱死者的電腦和手機(jī)组去,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 95,226評論 3 399
  • 文/潘曉璐 我一進(jìn)店門鞍陨,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人从隆,你說我怎么就攤上這事诚撵。” “怎么了键闺?”我有些...
    開封第一講書人閱讀 169,461評論 0 362
  • 文/不壞的土叔 我叫張陵寿烟,是天一觀的道長。 經(jīng)常有香客問我辛燥,道長筛武,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 60,135評論 1 300
  • 正文 為了忘掉前任挎塌,我火速辦了婚禮徘六,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘榴都。我一直安慰自己待锈,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 69,130評論 6 398
  • 文/花漫 我一把揭開白布嘴高。 她就那樣靜靜地躺著竿音,像睡著了一般和屎。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上春瞬,一...
    開封第一講書人閱讀 52,736評論 1 312
  • 那天柴信,我揣著相機(jī)與錄音,去河邊找鬼快鱼。 笑死颠印,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的抹竹。 我是一名探鬼主播线罕,決...
    沈念sama閱讀 41,179評論 3 422
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼窃判!你這毒婦竟也來了钞楼?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 40,124評論 0 277
  • 序言:老撾萬榮一對情侶失蹤袄琳,失蹤者是張志新(化名)和其女友劉穎询件,沒想到半個(gè)月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體唆樊,經(jīng)...
    沈念sama閱讀 46,657評論 1 320
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡宛琅,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 38,723評論 3 342
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了逗旁。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片嘿辟。...
    茶點(diǎn)故事閱讀 40,872評論 1 353
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖片效,靈堂內(nèi)的尸體忽然破棺而出红伦,到底是詐尸還是另有隱情,我是刑警寧澤淀衣,帶...
    沈念sama閱讀 36,533評論 5 351
  • 正文 年R本政府宣布昙读,位于F島的核電站,受9級特大地震影響膨桥,放射性物質(zhì)發(fā)生泄漏蛮浑。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 42,213評論 3 336
  • 文/蒙蒙 一只嚣、第九天 我趴在偏房一處隱蔽的房頂上張望陵吸。 院中可真熱鬧,春花似錦介牙、人聲如沸壮虫。這莊子的主人今日做“春日...
    開封第一講書人閱讀 32,700評論 0 25
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽囚似。三九已至剩拢,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間饶唤,已是汗流浹背徐伐。 一陣腳步聲響...
    開封第一講書人閱讀 33,819評論 1 274
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留募狂,地道東北人办素。 一個(gè)月前我還...
    沈念sama閱讀 49,304評論 3 379
  • 正文 我出身青樓,卻偏偏與公主長得像祸穷,于是被迫代替她去往敵國和親性穿。 傳聞我的和親對象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 45,876評論 2 361

推薦閱讀更多精彩內(nèi)容

  • 一睜眼雷滚,他的堅(jiān)韌頑強(qiáng)便震撼了自己:啊啊靶柙!F碓丁呆万!我是一塊石頭。青苔微澀车份,黃土存柔谋减,這顆頑石卡在這里,把歲月磨成紋扫沼,把...
    知道3閱讀 238評論 0 0
  • 打開門,一眼看到兒子跌跌撞撞的正往門口奔來霸褒,走到鞋柜邊上伴找,然后他吃力的抱著拖鞋往你手里送,你趕忙放下自己手里的鑰匙...
    簡橙橙閱讀 183評論 0 0