# Copyright (c) 2017-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
#
# Based on:
# --------------------------------------------------------
# Fast/er R-CNN
# Licensed under The MIT License [see LICENSE for details]
# Written by Bharath Hariharan
# --------------------------------------------------------
"""Python implementation of the PASCAL VOC devkit's AP evaluation code."""
import cPickle
import logging
import numpy as np
import os
import xml.etree.ElementTree as ET
logger = logging.getLogger(__name__)
def parse_rec(filename):
"""Parse a PASCAL VOC xml file."""
tree = ET.parse(filename)
objects = []
for obj in tree.findall('object'):
obj_struct = {}
obj_struct['name'] = obj.find('name').text
obj_struct['pose'] = obj.find('pose').text
obj_struct['truncated'] = int(obj.find('truncated').text)
obj_struct['difficult'] = int(obj.find('difficult').text)
bbox = obj.find('bndbox')
obj_struct['bbox'] = [int(bbox.find('xmin').text),
int(bbox.find('ymin').text),
int(bbox.find('xmax').text),
int(bbox.find('ymax').text)]
objects.append(obj_struct)
return objects
def voc_ap(rec, prec, use_07_metric=False):
"""Compute VOC AP given precision and recall. If use_07_metric is true, uses
the VOC 07 11-point method (default:False).
"""
if use_07_metric:
# 11 point metric
ap = 0.
for t in np.arange(0., 1.1, 0.1):
if np.sum(rec >= t) == 0:
p = 0
else:
p = np.max(prec[rec >= t])
ap = ap + p / 11.
else:
# correct AP calculation
# first append sentinel values at the end
mrec = np.concatenate(([0.], rec, [1.]))
mpre = np.concatenate(([0.], prec, [0.]))
# compute the precision envelope
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]
# and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
def voc_eval(detpath,
annopath,
imagesetfile,
classname,
cachedir,
ovthresh=0.5,
use_07_metric=False):
"""rec, prec, ap = voc_eval(detpath,
annopath,
imagesetfile,
classname,
[ovthresh],
[use_07_metric])
Top level function that does the PASCAL VOC evaluation.
detpath: Path to detections
detpath.format(classname) should produce the detection results file.
annopath: Path to annotations
annopath.format(imagename) should be the xml annotations file.
imagesetfile: Text file containing the list of images, one image per line.
classname: Category name (duh)
cachedir: Directory for caching the annotations
[ovthresh]: Overlap threshold (default = 0.5)
[use_07_metric]: Whether to use VOC07's 11 point AP computation
(default False)
"""
# assumes detections are in detpath.format(classname)
# assumes annotations are in annopath.format(imagename)
# assumes imagesetfile is a text file with each line an image name
# cachedir caches the annotations in a pickle file
# first load gt
if not os.path.isdir(cachedir):
os.mkdir(cachedir)
imageset = os.path.splitext(os.path.basename(imagesetfile))[0]
cachefile = os.path.join(cachedir, imageset + '_annots.pkl')
# read list of images
with open(imagesetfile, 'r') as f:
lines = f.readlines()
imagenames = [x.strip() for x in lines]
if not os.path.isfile(cachefile):
# load annots
recs = {}
for i, imagename in enumerate(imagenames):
recs[imagename] = parse_rec(annopath.format(imagename))
if i % 100 == 0:
logger.info(
'Reading annotation for {:d}/{:d}'.format(
i + 1, len(imagenames)))
# save
logger.info('Saving cached annotations to {:s}'.format(cachefile))
with open(cachefile, 'w') as f:
cPickle.dump(recs, f)
else:
# load
with open(cachefile, 'r') as f:
recs = cPickle.load(f)
# extract gt objects for this class
class_recs = {}
npos = 0
for imagename in imagenames:
R = [obj for obj in recs[imagename] if obj['name'] == classname]
bbox = np.array([x['bbox'] for x in R])
difficult = np.array([x['difficult'] for x in R]).astype(np.bool)
det = [False] * len(R)
npos = npos + sum(~difficult)
class_recs[imagename] = {'bbox': bbox,
'difficult': difficult,
'det': det}
# read dets
detfile = detpath.format(classname)
with open(detfile, 'r') as f:
lines = f.readlines()
splitlines = [x.strip().split(' ') for x in lines]
image_ids = [x[0] for x in splitlines]
confidence = np.array([float(x[1]) for x in splitlines])
BB = np.array([[float(z) for z in x[2:]] for x in splitlines])
"""
主要部分I喑@桥ァ!:衤觥!
"""
# sort by confidence
sorted_ind = np.argsort(-confidence)
BB = BB[sorted_ind, :]
image_ids = [image_ids[x] for x in sorted_ind]
# go down dets and mark TPs and FPs
nd = len(image_ids)
tp = np.zeros(nd)
fp = np.zeros(nd)
for d in range(nd):
R = class_recs[image_ids[d]]
bb = BB[d, :].astype(float)
ovmax = -np.inf
BBGT = R['bbox'].astype(float)
if BBGT.size > 0:
# compute overlaps
# intersection
ixmin = np.maximum(BBGT[:, 0], bb[0])
iymin = np.maximum(BBGT[:, 1], bb[1])
ixmax = np.minimum(BBGT[:, 2], bb[2])
iymax = np.minimum(BBGT[:, 3], bb[3])
iw = np.maximum(ixmax - ixmin + 1., 0.)
ih = np.maximum(iymax - iymin + 1., 0.)
inters = iw * ih
# union
uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) +
(BBGT[:, 2] - BBGT[:, 0] + 1.) *
(BBGT[:, 3] - BBGT[:, 1] + 1.) - inters)
overlaps = inters / uni
ovmax = np.max(overlaps)
jmax = np.argmax(overlaps)
if ovmax > ovthresh:
if not R['difficult'][jmax]:
if not R['det'][jmax]:
tp[d] = 1.
R['det'][jmax] = 1
else:
fp[d] = 1.
else:
fp[d] = 1.
# compute precision recall
fp = np.cumsum(fp)
tp = np.cumsum(tp)
rec = tp / float(npos)
# avoid divide by zero in case the first detection matches a difficult
# ground truth
prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
ap = voc_ap(rec, prec, use_07_metric)
return rec, prec, ap
mAP計算
最后編輯于 :
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
- 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來御雕,“玉大人矢沿,你說我怎么就攤上這事∷岣伲” “怎么了捣鲸?”我有些...
- 文/不壞的土叔 我叫張陵,是天一觀的道長闽坡。 經(jīng)常有香客問我栽惶,道長脓诡,這世上最難降的妖魔是什么? 我笑而不...
- 正文 為了忘掉前任媒役,我火速辦了婚禮祝谚,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘酣衷。我一直安慰自己交惯,他們只是感情好,可當我...
- 文/花漫 我一把揭開白布穿仪。 她就那樣靜靜地躺著席爽,像睡著了一般。 火紅的嫁衣襯著肌膚如雪啊片。 梳的紋絲不亂的頭發(fā)上只锻,一...
- 文/蒼蘭香墨 我猛地睜開眼瞒窒,長吁一口氣:“原來是場噩夢啊……” “哼捺僻!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起崇裁,我...
- 正文 年R本政府宣布晰赞,位于F島的核電站稼病,受9級特大地震影響选侨,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜然走,卻給世界環(huán)境...
- 文/蒙蒙 一援制、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧芍瑞,春花似錦晨仑、人聲如沸。這莊子的主人今日做“春日...
- 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至竟贯,卻和暖如春答捕,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背屑那。 一陣腳步聲響...
推薦閱讀更多精彩內(nèi)容
- 紀念版的評分圖: 在COCO數(shù)據(jù)中,默認AP就是mAP芒填。 mAP@.5IOU=AP@.5IOU, mAP@.75...
- MAP(Mean Average Precision)的基本思路: 對于有m個類別的目標檢測問題來說呜叫,MAP就是這...
- 由于特屬原因,需要調(diào)試這里的代碼殿衰。朱庆。。 代碼地址原始代碼與作者的討論代碼是在ubuntu上面調(diào)試的 目錄: 制作數(shù)...
- Detectron是Facebook AI Research 的開源項目闷祥。主要是faster RCNN系列的大神們...
- Detectron是Facebook AI研究院(FAIR)于2018年初公開的目標檢測平臺娱颊,包含了大量業(yè)內(nèi)最具代...