采用jar提交集群模式流程為:
本地完成代碼開發(fā) –> 本地編譯打包 -> 提交集群執(zhí)行
創(chuàng)建三層包
需要先創(chuàng)建三層package(eg:cn.nokia.bigdata)吊说,然后在package下創(chuàng)建object论咏,如下圖
Paste_Image.png
稍微修改了下官方例子
package cn.nokia.bigdata
import org.apache.spark.{SparkConf, SparkContext}
// $example on$
import org.apache.spark.mllib.classification.{LogisticRegressionModel, LogisticRegressionWithLBFGS}
import org.apache.spark.mllib.evaluation.MulticlassMetrics
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.util.MLUtils
// $example off$
object Test {
def main(args: Array[String]): Unit = {
// val conf = new SparkConf().setAppName("LogisticRegressionWithLBFGSExample")
val conf = new SparkConf().setAppName("LogisticRegressionWithLBFGSExample").setMaster("local[*]")
val sc = new SparkContext(conf)
// $example on$
// Load training data in LIBSVM format.
//val data = MLUtils.loadLibSVMFile(sc, "file:///usr/local/spark-2.1.0/data/mllib/sample_libsvm_data.txt")
val data = MLUtils.loadLibSVMFile(sc, "D:\\spark\\data\\mllib\\sample_libsvm_data.txt")
// Split data into training (60%) and test (40%).
val splits = data.randomSplit(Array(0.6, 0.4), seed = 11L)
val training = splits(0).cache()
val test = splits(1)
// Run training algorithm to build the model
val model = new LogisticRegressionWithLBFGS()
.setNumClasses(10)
.run(training)
// Compute raw scores on the test set.
val predictionAndLabels = test.map { case LabeledPoint(label, features) =>
val prediction = model.predict(features)
(prediction, label)
}
// Get evaluation metrics.
val metrics = new MulticlassMetrics(predictionAndLabels)
val accuracy = metrics.accuracy
println(s"Accuracy = $accuracy")
// Save and load model
model.save(sc, "target/tmp/scalaLogisticRegressionWithLBFGSModl")
val sameModel = LogisticRegressionModel.load(sc,
"target/tmp/scalaLogisticRegressionWithLBFGSModel")
// $example off$
sc.stop()
}
}
// scalastyle:on println
當(dāng)前項(xiàng)目結(jié)構(gòu)
Paste_Image.png
打開項(xiàng)目結(jié)構(gòu)
File -> Project Structure:
Paste_Image.png
快捷按鈕
Paste_Image.png
artifact => + => jar
Paste_Image.png
選擇主類:
Paste_Image.png
輸出設(shè)置
Paste_Image.png
編譯
Paste_Image.png
Paste_Image.png
- build(首次打包)
- rebuild(重新打包)
- clean(清理當(dāng)前內(nèi)容)
打包完后,可以在如下目錄中找到對應(yīng)jar包:
Paste_Image.png
本地提交
D:\spark\bin>spark-submit --class cn.nokia.bigdata.Test spark.jar local
Paste_Image.png
Paste_Image.png