Given a non-empty array of integers, return the k most frequent elements.
For example,
Given [1,1,1,2,2,3] and k = 2, return [1,2].
Note:
You may assume k is always valid, 1 ≤ k ≤ number of unique elements.
Your algorithm's time complexity must be better than O(n log n), where n is the array's size.
HashMapCount后 的思路類似:215. Kth Largest Element in an Array
http://www.reibang.com/p/cbeeddb3cd1a
Solution1:HashMapCount + Bucketsort
思路: MapCount: num -> count序调,將count放到bucket中找出前k個(gè)num
Time Complexity: O(N) Space Complexity: O(N)
Solution2:HashMapCount + MaxHeap Sort
思路: MapCount: num -> count屋厘,建MaxHeap金闽,將(num,count)放到堆中以count排出前k個(gè)num
Time Complexity: O(N + k * logN) N建堆
Space Complexity: O(N)
Solution3:HashMapCount + MinHeap 過(guò)濾維護(hù)前k個(gè) 最多count的元素
思路: MapCount: num -> count,建MaxHeap宾袜,將(num,count)放到堆中以count排出前k個(gè)num
Time Complexity: O(k + N * logk) k建堆
Space Complexity: O(N)
Solution4:HashMapCount + TreeMap作sort
思路: MapCount: num -> count,建TreeMap率寡,積累 (count -> num_list)捧挺,因?yàn)門(mén)reeMap key=count有序 所以就可以選出最后最大的count的k個(gè)
Time Complexity: O(N * logN)
Space Complexity: O(N)
TreeMap概念可參考:http://www.reibang.com/p/e29571903591
Solution1 Code:
class Solution {
public List<Integer> topKFrequent(int[] nums, int k) {
// count
Map<Integer, Integer> frequencyMap = new HashMap<Integer, Integer>();
for (int n : nums) {
frequencyMap.put(n, frequencyMap.getOrDefault(n, 0) + 1);
}
// bucket sort
List<Integer>[] bucket = new List[nums.length + 1];
for (int key : frequencyMap.keySet()) {
int frequency = frequencyMap.get(key);
if (bucket[frequency] == null) {
bucket[frequency] = new ArrayList<>();
}
bucket[frequency].add(key);
}
// prepare result
List<Integer> res = new ArrayList<>();
outerloop:
for (int pos = bucket.length - 1; pos >= 0; pos--) {
if(bucket[pos] == null) continue;
for(int i = 0; i < bucket[pos].size(); i++) {
res.add(bucket[pos].get(i));
if(res.size() == k) break outerloop;
}
}
return res;
}
}
Solution2 Code:
class Solution {
public List<Integer> topKFrequent(int[] nums, int k) {
// count
Map<Integer, Integer> map = new HashMap<Integer, Integer>();
for (int n : nums) {
map.put(n, map.getOrDefault(n, 0) + 1);
}
// max-heap to sort and get the Top K Frequent Elements
PriorityQueue<Map.Entry<Integer, Integer>> maxHeap =
new PriorityQueue<>((a,b)->(b.getValue()-a.getValue()));
for(Map.Entry<Integer,Integer> entry: map.entrySet()){
maxHeap.add(entry);
}
List<Integer> res = new ArrayList<>();
while(res.size() < k){
Map.Entry<Integer, Integer> entry = maxHeap.poll();
res.add(entry.getKey());
}
return res;
}
}
Solution3 Code:
class Solution {
public List<Integer> topKFrequent(int[] nums, int k) {
// count
Map<Integer, Integer> map = new HashMap<Integer, Integer>();
for (int n : nums) {
map.put(n, map.getOrDefault(n, 0) + 1);
}
// min-heap to keep the Top K Frequent Elements
PriorityQueue<Map.Entry<Integer, Integer>> minHeap =
new PriorityQueue<>((a,b)->(a.getValue() - b.getValue()));
for(Map.Entry<Integer,Integer> entry: map.entrySet()) {
minHeap.add(entry);
if(minHeap.size() > k) {
minHeap.poll();
}
}
List<Integer> res = new ArrayList<>();
while(minHeap.size() > 0){
Map.Entry<Integer, Integer> entry = minHeap.poll();
res.add(entry.getKey());
}
return res;
}
}
Solution4 Code:
class Solution {
public List<Integer> topKFrequent(int[] nums, int k) {
// count
Map<Integer, Integer> map = new HashMap<Integer, Integer>();
for (int n : nums) {
map.put(n, map.getOrDefault(n, 0) + 1);
}
TreeMap<Integer, List<Integer>> freqMap = new TreeMap<>();
for(int num : map.keySet()){
int freq = map.get(num);
if(!freqMap.containsKey(freq)){
freqMap.put(freq, new LinkedList<>());
}
freqMap.get(freq).add(num);
}
List<Integer> res = new ArrayList<>();
outerloop:
while(true) { //since k is vaild
Map.Entry<Integer, List<Integer>> entry = freqMap.pollLastEntry();
// if(entry == null) break;
for(int i = 0; i < entry.getValue().size() ; i++) {
res.add(entry.getValue().get(i));
if(res.size() == k) break outerloop;
}
}
return res;
}
}