0 前言
以下針對最近使用PaddleClas和PaddleServing在華為云GPU服務(wù)器上訓(xùn)練和部署一個車輛類型識別模型過程進(jìn)行記錄夏志,以供日后自己參考和其他有需要的朋友一些幫助鬼癣,接觸這方面東西時間較短擂送,如有問題歡迎批評指正回溺。
如何在華為云服務(wù)器上搭建GPU版本的PaddlePaddle環(huán)境請參考以下文章: https://blog.csdn.net/loutengyuan/article/details/126527326
1 環(huán)境準(zhǔn)備
需要準(zhǔn)備PaddleClas的運行環(huán)境和Paddle Serving的運行環(huán)境春贸。
- 準(zhǔn)備PaddleClas的運行環(huán)境鏈接
# 克隆代碼
git clone https://github.com/PaddlePaddle/PaddleClas
- 安裝PaddleServing的運行環(huán)境混萝,步驟如下
# 安裝serving,用于啟動服務(wù)
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.8.3.post102-py3-none-any.whl
pip3 install paddle_serving_server_gpu-0.8.3.post102-py3-none-any.whl
# 安裝client萍恕,用于向服務(wù)發(fā)送請求
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.8.3-cp38-none-any.whl
pip3 install paddle_serving_client-0.8.3-cp38-none-any.whl
# 安裝serving-app
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_app-0.8.3-py3-none-any.whl
pip3 install paddle_serving_app-0.8.3-py3-none-any.whl
2 數(shù)據(jù)集及其處理
將分類整理好的數(shù)據(jù)按照不同分類分別放在不同文件夾下逸嘀,然后將數(shù)據(jù)上傳至華為云服務(wù)器,目錄結(jié)構(gòu)如下:
# tree ./TruckType
.
├── test_01.jpg
├── TruckType
│ ├── 0-qyc
│ │ ├── 10765.jpg
│ │ ├── 19994.jpg
│ │ ├── 1029.jpg
│ │ ├── 106710.jpg
│ │ ├── 9610.jpg
│ │ ├── 98388.jpg
│ │ └── 9938.jpg
│ ├── 1-zhc
│ │ ├── 10154.jpg
│ │ ├── 1055.jpg
│ │ ├── 10801.jpg
│ │ ├── 9969.jpg
│ │ ├── 9970.jpg
│ │ ├── 9513.jpg
│ │ └── 9515.jpg
│ ├── 2-zxc
│ │ ├── 5274.jpg
│ │ ├── 69648.jpg
│ │ ├── 6649.jpg
│ │ ├── 5651.jpg
│ │ ├── 3055.jpg
│ │ ├── 7630.jpg
│ │ ├── 58.jpg
│ │ └── 9082.jpg
│ ├── 3-gc
│ │ ├── 9587.jpg
│ │ ├── 855.jpg
│ │ ├── 663.jpg
│ │ ├── 5611.jpg
│ │ ├── 9085.jpg
│ │ └── 2284.jpg
│ ├── 4-jbc
│ │ ├── 874.jpg
│ │ ├── 56456.jpg
│ │ ├── 36576.jpg
│ │ └── 25244.jpg
│ ├── all_list.txt
│ ├── label_list.txt
│ ├── test_list.txt
│ ├── train_list.txt
│ └── val_list.txt
└── write_label_truck_type.py
test_01.jpg
用于測試訓(xùn)練模型
0-qyc 允粤、1-zhc 崭倘、2-zxc 、3-gc 类垫、4-jbc
分別是不同類型的車輛類型圖片(注意:圖片文件名最好不要有中文司光、括號或者空格之類的特殊字符,容易訓(xùn)練報錯)
all_list.txt悉患、label_list.txt残家、test_list.txt、train_list.txt售躁、val_list.txt
分別是處理后生成的標(biāo)簽文件
write_label_truck_type.py
是處理數(shù)據(jù)的腳步文件坞淮,用于自動生成以上標(biāo)簽文件
生成標(biāo)簽文件腳步 write_label_truck_type.py 代碼如下:
# -*- coding: utf-8 -*-
import os
import sys
from sklearn.utils import shuffle
# 拿到總的訓(xùn)練數(shù)據(jù)txt
# -*- coding: utf-8 -*-
# 根據(jù)官方paddleclas的提示,我們需要把圖像變?yōu)閮蓚€txt文件
# train_list.txt(訓(xùn)練集)
# val_list.txt(驗證集)
# 先把路徑搞定 比如:foods/beef_carpaccio/855780.jpg ,讀取到并寫入txt
# 根據(jù)左側(cè)生成的文件夾名字來寫根目錄
# 先得到總的txt后續(xù)再進(jìn)行劃分陪捷,因為要劃分出驗證集回窘,所以要先打亂,因為原本是有序的
def get_all_txt(image_root, dir_name):
all_list = []
i = 0 # 標(biāo)記總文件數(shù)量
j = -1 # 標(biāo)記文件類別
is_image_root = True
for root, dirs, files in os.walk(image_root+dir_name): # 分別代表根目錄市袖、文件夾毫玖、文件
if is_image_root:
out_dirs = dirs
is_image_root = False
for file in files:
i = i + 1
# 文件中每行格式: 圖像相對路徑 圖像的label_id(數(shù)字類別)(注意:中間有空格)。
imgpath = os.path.join(root,file).replace(image_root, "")
all_list.append(imgpath+" "+str(j)+"\n")
j = j + 1
return all_list, i, out_dirs
if __name__ == "__main__":
if len(sys.argv) < 3:
print("請傳入預(yù)處理圖像根目錄和文件夾: 傳入?yún)?shù)長度錯誤凌盯!")
else:
# for arg in sys.argv:
# print(arg)
image_root = sys.argv[1]
dir_name = sys.argv[2]
print("image_root = {} dir_name = {}".format(image_root, dir_name))
# 拿到總的訓(xùn)練數(shù)據(jù)txt
all_list, all_len, dirs = get_all_txt(image_root, dir_name)
print(all_len)
print(dirs)
# 寫入標(biāo)簽文件
label_list = []
dir_idx = 0
for dir in dirs:
label_list.append("{} {}\n".format(dir_idx, dir))
dir_idx = dir_idx + 1
label_str = ''.join(label_list)
f = open(image_root+dir_name+'/label_list.txt', 'w', encoding='utf-8')
f.write(label_str)
print("寫入標(biāo)簽文件完成")
# 把數(shù)據(jù)打亂
all_list = shuffle(all_list)
allstr = ''.join(all_list)
f = open(image_root+dir_name+'/all_list.txt', 'w', encoding='utf-8')
f.write(allstr)
print("打亂成功,并寫入文本")
# 按照比例劃分?jǐn)?shù)據(jù)集 食品的數(shù)據(jù)有5000張圖片烹玉,不算大數(shù)據(jù)驰怎,一般9:1即可
train_size = int(all_len * 0.8)
train_list = all_list[:train_size]
temp_list = all_list[train_size:]
val_size = int(len(temp_list) * 0.8)
val_list = temp_list[:val_size]
test_list = temp_list[val_size:]
print(len(train_list))
print(len(val_list))
print(len(test_list))
# 生成訓(xùn)練集txt
train_txt = ''.join(train_list)
f_train = open(image_root+dir_name+'/train_list.txt', 'w', encoding='utf-8')
f_train.write(train_txt)
f_train.close()
print("train_list.txt 生成成功!")
# 生成驗證集txt
val_txt = ''.join(val_list)
f_val = open(image_root+dir_name+'/val_list.txt', 'w', encoding='utf-8')
f_val.write(val_txt)
f_val.close()
print("val_list.txt 生成成功二打!")
# 生成驗證集txt
test_txt = ''.join(test_list)
f_test = open(image_root+dir_name+'/test_list.txt', 'w', encoding='utf-8')
f_test.write(test_txt)
f_test.close()
print("test_list.txt 生成成功县忌!")
執(zhí)行腳本:
cd 數(shù)據(jù)目錄
python write_label_truck_type.py ./ TruckType
all_list.txt、test_list.txt继效、train_list.txt症杏、val_list.txt 內(nèi)容格式類似如下:
TruckType/1-zhc/495218.jp 1
TruckType/3-gc/543432.jpg 3
TruckType/2-zxc/3453.jpg 2
TruckType/2-zxc/343453.jpg 2
TruckType/3-gc/34545.jpg 3
TruckType/1-zhc/637371.jpg 1
TruckType/0-qyc/32354.jpg 0
TruckType/0-qyc/650456.jpg 0
label_list.txt 格式如下:
0 0-qyc
1 1-zhc
2 2-zxc
3 3-gc
4 4-jbc
3 模型訓(xùn)練
進(jìn)入之前下載的PaddleClas代碼目錄
# cd PaddleClas
# ll
total 148
drwxr-xr-x 2 root root 4096 Aug 25 14:52 benchmark
drwxr-xr-x 2 root root 4096 Aug 25 14:52 dataset
drwxr-xr-x 22 root root 4096 Sep 2 11:10 deploy
drwxr-xr-x 6 root root 4096 Aug 25 14:52 docs
-rw-r--r-- 1 root root 28095 Aug 25 14:52 hubconf.py
drwxr-xr-x 4 root root 4096 Sep 3 09:32 inference
-rw-r--r-- 1 root root 705 Aug 25 14:52 __init__.py
-rw-r--r-- 1 root root 11357 Aug 25 14:52 LICENSE
-rw-r--r-- 1 root root 259 Aug 25 14:52 MANIFEST.in
drwxr-xr-x 6 root root 4096 Sep 3 08:55 output
-rw-r--r-- 1 root root 24463 Aug 25 14:52 paddleclas.py
drwxr-xr-x 12 root root 4096 Aug 31 16:34 ppcls
-rw-r--r-- 1 root root 9819 Aug 25 14:52 README_ch.md
-rw-r--r-- 1 root root 9149 Aug 25 14:52 README_en.md
-rw-r--r-- 1 root root 12 Aug 25 14:52 README.md
-rw-r--r-- 1 root root 148 Aug 25 14:52 requirements.txt
-rw-r--r-- 1 root root 2343 Aug 25 14:52 setup.py
drwxr-xr-x 3 root root 4096 Aug 25 14:52 tests
drwxr-xr-x 5 root root 4096 Aug 25 14:52 test_tipc
drwxr-xr-x 2 root root 4096 Aug 25 14:52 tools
3.1 修改配置文件
主要是以下幾點:分類數(shù)、訓(xùn)練和驗證的路徑瑞信、圖像尺寸厉颤、數(shù)據(jù)預(yù)處理、訓(xùn)練和預(yù)測的num_workers: 0
(需要將num_workers改為0凡简,因為是單卡的)
下面以新手快速入門的ShuffleNetV2_x0_25為例子演示逼友,實際上PaddleClas/ppcls/configs/ImageNet/下面的文件夾全都是模型文件精肃,可以自行選用。
路徑如下:
PaddleClas/ppcls/configs/quick_start/new_user/ShuffleNetV2_x0_25.yaml
將其拷貝一份出來命名為ShuffleNetV2_x0_25_truck_type.yaml 路徑如下:
PaddleClas/ppcls/configs/quick_start/new_user/ShuffleNetV2_x0_25_truck_type.yaml
修改配置文件 ShuffleNetV2_x0_25_truck_type.yaml 如下:
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: ./output/truck_type/
# 使用GPU訓(xùn)練
device: gpu
# 每幾個輪次保存一次
save_interval: 1
eval_during_train: True
# 每幾個輪次驗證一次
eval_interval: 1
# 訓(xùn)練輪次
epochs: 100
print_batch_step: 1
use_visualdl: True #開啟可視化(目前平臺不可用)
# used for static mode and model export
# 圖像大小
image_shape: [3, 224, 224]
save_inference_dir: ./inference/clas_truck_type_infer
# training model under @to_static
to_static: False
# model architecture
Arch:
# 采用的網(wǎng)絡(luò)
name: ShuffleNetV2_x0_25
class_num: 5
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: Momentum
momentum: 0.9
lr:
name: Piecewise
learning_rate: 0.015
decay_epochs: [30, 60, 90]
values: [0.1, 0.01, 0.001, 0.0001]
regularizer:
name: 'L2'
coeff: 0.0005
# data loader for train and eval
DataLoader:
Train:
dataset:
name: ImageNetDataset
# 根路徑
image_root: /yxdata/truck_type/
# 前面自己生產(chǎn)得到的訓(xùn)練集文本路徑
cls_label_path: /yxdata/truck_type/TruckType/train_list.txt
# 數(shù)據(jù)預(yù)處理
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- RandFlipImage:
flip_code: 1
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: True
loader:
num_workers: 0
use_shared_memory: True
Eval:
dataset:
name: ImageNetDataset
# 根路徑
image_root: /yxdata/truck_type/
# 前面自己生產(chǎn)得到的驗證集文本路徑
cls_label_path: /yxdata/truck_type/TruckType/val_list.txt
# 數(shù)據(jù)預(yù)處理
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: True
loader:
num_workers: 0
use_shared_memory: True
Infer:
infer_imgs: /yxdata/truck_type/test_01.jpg
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
PostProcess:
name: Topk
# 輸出的可能性最高的前topk個
topk: 3
# 標(biāo)簽文件 需要自己新建文件
class_id_map_file: /yxdata/truck_type/TruckType/label_list.txt
Metric:
Train:
- TopkAcc:
topk: [1, 3]
Eval:
- TopkAcc:
topk: [1, 3]
3.2 開始訓(xùn)練
python3 tools/train.py \
-c ./ppcls/configs/quick_start/new_user/ShuffleNetV2_x0_25_truck_type.yaml \
-o Global.device=gpu
訓(xùn)練后會在 PaddleClas/output/truck_type/
目錄下生成模型文件
# tree ./truck_type/
├── ShuffleNetV2_x0_25
│ ├── best_model.pdopt
│ ├── best_model.pdparams
│ ├── best_model.pdstates
│ ├── epoch_100.pdopt
│ ├── epoch_100.pdparams
│ ├── epoch_100.pdstates
│ ├── epoch_10.pdopt
│ ├── epoch_10.pdparams
│ ├── epoch_10.pdstates
│ ├── epoch_11.pdopt
│ ├── epoch_11.pdparams
│ ├── epoch_11.pdstates
│ ├── epoch_1.pdopt
│ ├── epoch_1.pdparams
│ ├── epoch_1.pdstates
│ ├── export.log
│ ├── infer.log
│ ├── latest.pdopt
│ ├── latest.pdparams
│ ├── latest.pdstates
│ └── train.log
└── vdl
└── vdlrecords.1662166534.log
3.3 預(yù)測一張
python3 tools/infer.py \
-c ./ppcls/configs/quick_start/new_user/ShuffleNetV2_x0_25_truck_type.yaml \
-o Infer.infer_imgs=/yxdata/truck_type/test_01.jpg \
-o Global.pretrained_model=output/truck_type/ShuffleNetV2_x0_25/best_model
預(yù)測結(jié)果如下:
[{'class_ids': [4, 0, 1], 'scores': [0.9976, 0.00225, 0.0001], 'file_name': '/yxdata/truck_type/test_01.jpg', 'label_names': ['1-zhc', '3-gc', '2-zxc']}]
3.4 批量預(yù)測
python3 tools/infer.py \
-c ./ppcls/configs/quick_start/new_user/ShuffleNetV2_x0_25_truck_type.yaml \
-o Infer.infer_imgs=/yxdata/truck_type/ \
-o Global.pretrained_model=output/truck_type/ShuffleNetV2_x0_25/best_model
預(yù)測結(jié)果如下:
[{'class_ids': [4, 0, 1], 'scores': [0.9976, 0.00225, 0.0001], 'file_name': '/yxdata/truck_type/test_01.jpg', 'label_names': ['1-zhc', '3-gc', '2-zxc']}]
3.5 導(dǎo)出預(yù)測模型
python3 tools/export_model.py \
-c ppcls/configs/quick_start/new_user/ShuffleNetV2_x0_25_truck_type.yaml \
-o Global.pretrained_model=output/truck_type/ShuffleNetV2_x0_25/best_model
導(dǎo)出成功后將在 PaddleClas/inference/clas_truck_type_infer/ 目錄下生成模型文件帜乞,結(jié)構(gòu)如下:
# tree ./clas_truck_type_infer/
├── inference.pdiparams
├── inference.pdiparams.info
└── inference.pdmodel
4 模型服務(wù)化部署
4.1 模型轉(zhuǎn)換
進(jìn)入工作目錄:
cd PaddleClas/deploy/
創(chuàng)建并進(jìn)入models文件夾:
# 創(chuàng)建并進(jìn)入models文件夾
mkdir models
cd models
將上一步模型訓(xùn)練的最后導(dǎo)出的練好的 inference 模型放到該文件夾下司抱,結(jié)構(gòu)如下:
└── clas_truck_type_infer
├── inference.pdiparams
├── inference.pdiparams.info
└── inference.pdmodel
轉(zhuǎn)換車輛類型分類 inference 模型為 Serving 模型:
# 轉(zhuǎn)換車輛類型分類模型
python3.8 -m paddle_serving_client.convert \
--dirname ./clas_truck_type_infer/ \
--model_filename inference.pdmodel \
--params_filename inference.pdiparams \
--serving_server ./clas_truck_type_serving/ \
--serving_client ./clas_truck_type_client/
車輛類型分類 inference 模型轉(zhuǎn)換完成后,會在當(dāng)前文件夾多出 clas_truck_type_serving/和 clas_truck_type_client/ 的文件夾黎烈,具備如下結(jié)構(gòu):
├── clas_truck_type_serving/
│ ├── inference.pdiparams
│ ├── inference.pdmodel
│ ├── serving_server_conf.prototxt
│ └── serving_server_conf.stream.prototxt
└── clas_truck_type_client/
├── serving_client_conf.prototxt
└── serving_client_conf.stream.prototxt
模型參數(shù)修改
Serving 為了兼容不同模型的部署习柠,提供了輸入輸出重命名的功能。讓不同的模型在推理部署時照棋,只需要修改配置文件的 alias_name 即可资溃,無需修改代碼即可完成推理部署。因此在轉(zhuǎn)換完畢后需要分別修改 clas_truck_type_serving下的文件 serving_server_conf.prototxt 和 clas_truck_type_client 下的文件 serving_client_conf.prototxt必怜,將 fetch_var 中 alias_name: 后的字段改為 prediction肉拓,修改后的 serving_server_conf.prototxt 和 serving_client_conf.prototxt 如下所示:
feed_var {
name: "x"
alias_name: "x"
is_lod_tensor: false
feed_type: 1
shape: 3
shape: 224
shape: 224
}
fetch_var {
name: "softmax_1.tmp_0"
alias_name: "prediction"
is_lod_tensor: false
fetch_type: 1
shape: 5
}
上述命令中參數(shù)具體含義如下表所示:
參數(shù) | 類型 | 默認(rèn)值 | 描述 |
---|---|---|---|
dirname |
str | - | 需要轉(zhuǎn)換的模型文件存儲路徑,Program結(jié)構(gòu)文件和參數(shù)文件均保存在此目錄梳庆。 |
model_filename |
str | None | 存儲需要轉(zhuǎn)換的模型Inference Program結(jié)構(gòu)的文件名稱暖途。如果設(shè)置為None,則使用 __model__ 作為默認(rèn)的文件名 |
params_filename |
str | None | 存儲需要轉(zhuǎn)換的模型所有參數(shù)的文件名稱膏执。當(dāng)且僅當(dāng)所有模型參數(shù)被保>存在一個單獨的二進(jìn)制文件中驻售,它才需要被指定。如果模型參數(shù)是存儲在各自分離的文件中更米,設(shè)置它的值為None |
serving_server |
str | "serving_server" |
轉(zhuǎn)換后的模型文件和配置文件的存儲路徑欺栗。默認(rèn)值為serving_server |
serving_client |
str | "serving_client" |
轉(zhuǎn)換后的客戶端配置文件存儲路徑。默認(rèn)值為serving_client |
4.2 服務(wù)部署
進(jìn)入到工作目錄
cd ./deploy/paddleserving/
paddleserving 目錄包含啟動 Python Pipeline 服務(wù)征峦、C++ Serving 服務(wù)和發(fā)送預(yù)測請求的代碼迟几,包括:
__init__.py
classification_web_service.py # 啟動pipeline服務(wù)端的腳本
config.yml # 啟動pipeline服務(wù)的配置文件
pipeline_http_client.py # http方式發(fā)送pipeline預(yù)測請求的腳本
pipeline_rpc_client.py # rpc方式發(fā)送pipeline預(yù)測請求的腳本
readme.md # 分類模型服務(wù)化部署文檔
run_cpp_serving.sh # 啟動C++ Serving部署的腳本
test_cpp_serving_client.py # rpc方式發(fā)送C++ serving預(yù)測請求的腳本
修改config.yml文件如下:
#worker_num, 最大并發(fā)數(shù)。當(dāng)build_dag_each_worker=True時, 框架會創(chuàng)建worker_num個進(jìn)程栏笆,每個進(jìn)程內(nèi)構(gòu)建grpcSever和DAG
##當(dāng)build_dag_each_worker=False時类腮,框架會設(shè)置主線程grpc線程池的max_workers=worker_num
worker_num: 1
#http端口, rpc_port和http_port不允許同時為空。當(dāng)rpc_port可用且http_port為空時蛉加,不自動生成http_port
http_port: 8877
#rpc_port: 9993
dag:
#op資源類型, True, 為線程模型蚜枢;False,為進(jìn)程模型
is_thread_op: False
op:
clas_truck_type:
#并發(fā)數(shù)针饥,is_thread_op=True時厂抽,為線程并發(fā);否則為進(jìn)程并發(fā)
concurrency: 1
#當(dāng)op配置沒有server_endpoints時丁眼,從local_service_conf讀取本地服務(wù)配置
local_service_conf:
#uci模型路徑
model_config: ../models/clas_truck_type_serving
# model_config: ../models/ResNet50_vd_serving
#計算硬件類型: 空缺時由devices決定(CPU/GPU)筷凤,0=cpu, 1=gpu, 2=tensorRT, 3=arm cpu, 4=kunlun xpu
device_type: 1
#計算硬件ID,當(dāng)devices為""或不寫時為CPU預(yù)測户盯;當(dāng)devices為"0", "0,1,2"時為GPU預(yù)測,表示使用的GPU卡
devices: "0" # "0,1"
#client類型,包括brpc, grpc和local_predictor.local_predictor不啟動Serving服務(wù)雇逞,進(jìn)程內(nèi)預(yù)測
client_type: local_predictor
#Fetch結(jié)果列表,以client_config中fetch_var的alias_name為準(zhǔn)
fetch_list: ["prediction"]
修改 classification_web_service.py 文件如下:
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import datetime
import sys
from paddle_serving_app.reader import Sequential, URL2Image, Resize, CenterCrop, RGB2BGR, Transpose, Div, Normalize, Base64ToImage
try:
from paddle_serving_server_gpu.web_service import WebService, Op
except ImportError:
from paddle_serving_server.web_service import WebService, Op
import logging
import numpy as np
import base64, cv2
class TruckTypeClasOp(Op):
def init_op(self):
print("------------------------ TruckTypeClasOp init_op ---------------------------")
self.seq = Sequential([
Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)),
Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225],
True)
])
self.label_dict = {}
label_idx = 0
with open("truck_type_list.label") as fin:
for line in fin:
self.label_dict[label_idx] = line.strip()
label_idx += 1
print("label_dict --> {}".format(self.label_dict))
def preprocess(self, input_dicts, data_id, log_id):
print("{} TruckTypeClasOp preprocess\tbegin\t--> data_id: {}".format(datetime.datetime.now(), data_id))
(_, input_dict), = input_dicts.items()
batch_size = len(input_dict.keys())
imgs = []
for key in input_dict.keys():
data = base64.b64decode(input_dict[key].encode('utf8'))
data = np.fromstring(data, np.uint8)
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
img = self.seq(im)
imgs.append(img[np.newaxis, :].copy())
input_imgs = np.concatenate(imgs, axis=0)
print("{} TruckTypeClasOp preprocess\tfinish\t--> data_id: {}".format(datetime.datetime.now(), data_id))
# return {"inputs": input_imgs}, False, None, ""
return {"x": input_imgs}, False, None, ""
def postprocess(self, input_dicts, fetch_dict, data_id, log_id):
print("{} TruckTypeClasOp postprocess\tbegin\t--> data_id: {}".format(datetime.datetime.now(), data_id))
score_list = fetch_dict["prediction"]
print("{} data_id: {} --> score_list: {}".format(datetime.datetime.now(), data_id, score_list))
result = []
for score in score_list:
item = {}
score = score.tolist()
max_score = max(score)
idx = score.index(max_score)
print("{} data_id: {} --> max_score = {} --> idx = {}".format(datetime.datetime.now(), data_id, max_score, idx))
if self.label_dict is not None:
if idx < len(self.label_dict):
label = self.label_dict[score.index(max_score)].strip().replace(",", "")
else:
label = 'ErrorType'
else:
label = str(idx)
item["label"] = label
item["prob"] = max_score
result.append(item)
print("{} TruckTypeClasOp postprocess\tfinish\t--> data_id: {} --> result:{}".format(datetime.datetime.now(), data_id, result))
return {"result": str({"truck_type": result})}, None, ""
class ClassificationService(WebService):
def get_pipeline_response(self, read_op):
truck_type_op = TruckTypeClasOp(name="clas_truck_type", input_ops=[read_op])
return truck_type_op
uci_service = ClassificationService(name="classification")
uci_service.prepare_pipeline_config("config.yml")
uci_service.run_service()
添加文件 truck_type_list.label 吃靠,內(nèi)容如下:
牽引車
載貨車
自卸車
掛車
攪拌車
啟動服務(wù):
# 啟動服務(wù),運行日志保存在 paddleclas_recognition_log.txt
nohup python3.8 -u classification_web_service.py &>./paddleclas_recognition_log.txt &
查看進(jìn)程
ps -ef|grep python
關(guān)閉進(jìn)程
# 通過上一步查看進(jìn)程號足淆,殺死指定進(jìn)程
kill -9 19913
# 或者通過以下命令
python3.8 -m paddle_serving_server.serve stop
查看日志
tail -f 1000 ./paddleclas_recognition_log.txt
如何查看端口占用
$: netstat -anp | grep 8888
tcp 0 0 127.0.0.1:8888 0.0.0.0:* LISTEN 13404/python3
tcp 0 1 172.17.0.10:34036 115.42.35.84:8888 SYN_SENT 14586/python3
強制殺掉進(jìn)程:通過pid
$: kill -9 13404
$: kill -9 14586
$: netstat -anp | grep 8888
$:
4.3 服務(wù)測試
修改pipeline_http_client.py文件如下:
import requests
import json
import base64
import os
def cv2_to_base64(image):
return base64.b64encode(image).decode('utf8')
if __name__ == "__main__":
url = "http://127.0.0.1:8877/classification/prediction"
with open(os.path.join(".", "圖片路徑.jpg"), 'rb') as file:
image_data1 = file.read()
image = cv2_to_base64(image_data1)
data = {"key": ["image"], "value": [image]}
for i in range(1):
r = requests.post(url=url, data=json.dumps(data))
print(r.json())
發(fā)送請求:
python3.8 pipeline_http_client.py
成功運行后巢块,模型預(yù)測的結(jié)果會打印在客戶端中,如下所示:
{'err_no': 0, 'err_msg': '', 'key': ['result'], 'value': ["{'truck_type': [{'label': '載貨車', 'prob': 0.98669669032096863}]}"], 'tensors': []}