Deep Learning with Gaussian Process

Gaussian Processis a statistical model where observations are in the continuous domain, to learn more check outa tutorial on gaussian process(by Univ.of Cambridge’sZoubin G.). Gaussian Process is an infinite-dimensional generalization ofmultivariate normal distributions.

Researchers from University of Sheffield – Andreas C. Damanianou and Neil D. Lawrence –started using Gaussian Process with Deep Belief Networks (in 2013). This Blog post contains recent papers related to combining Deep Learning with Gaussian Process.

Best regards,

Amund Tveit

YEARTITLEAUTHOR

2016Inverse Reinforcement Learning via Deep Gaussian ProcessM Jin, C Spanos

2016Annealing Gaussian into ReLU: a New Sampling Strategy for Leaky-ReLU RBMCL Li, S Ravanbakhsh, B Poczos

2016Large Scale Gaussian Process for Overlap-based Object Proposal ScoringSL Pintea, S Karaoglu, JC van Gemert

2016Gaussian Neuron in Deep Belief Network for Sentiment PredictionY Jin, D Du, H Zhang

2016Fast, Exact and Multi-Scale Inference for Semantic Image Segmentation with Deep Gaussian CRFsS Chandra, I Kokkinos

2016The Variational Gaussian ProcessD Tran, R Ranganath, DM Blei

2016Probabilistic Feature Learning Using Gaussian Process Auto-EncodersS Olofsson

2016Sequential Inference for Deep Gaussian ProcessY Wang, M Brubaker, B Chaib

2016Gaussian Copula Variational Autoencoders for Mixed DataS Suh, S Choi

2016Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image DenoisingK Zhang, W Zuo, Y Chen, D Meng, L Zhang

2016Image super-resolution using non-local Gaussian process regressionH Wang, X Gao, K Zhang, J Li

2016Gaussian Conditional Random Field Network for Semantic SegmentationR Vemulapalli, O Tuzel, MY Liu, R Chellappa

2016Structured and Efficient Variational Deep Learning with Matrix Gaussian PosteriorsC Louizos, M Welling

2016Deep Gaussian Processes for Regression using Approximate Expectation PropagationTD Bui, D Hernández

2015Learning to Assess Terrain from Human Demonstration Using an Introspective Gaussian Process ClassifierLP Berczi, I Posner, TD Barfoot

2015Assessing the Degree of Nativeness and Parkinson’s Condition Using Gaussian Processes and Deep Rectifier Neural NetworksT Grósz, R Busa

2015Gaussian processes methods for nostationary regressionL Mu?oz González

2015Deep Neural Networks with Random Gaussian Weights: A Universal Classification Strategy?R Giryes, G Sapiro, AM Bronstein

2015Nonlinear Gaussian Belief Network based fault diagnosis for industrial processesH Yu, F Khan, V Garaniya

2015Interactions Between Gaussian Processes and Bayesian EstimationYL Wang

2015Gaussian discrete restricted Boltzmann machine: theory and its applications: a thesis presented in partial fulfilment of the requirements for the degree of Master of …S Manoharan

2015Prosody Generation Using Frame-based Gaussian Process RegressionT Koriyama, T Kobayashi

2015Mean-Field Inference in Gaussian Restricted Boltzmann MachineC Takahashi, M Yasuda

2015Variational Auto-encoded Deep Gaussian ProcessesZ Dai, A Damianou, J González, N Lawrence

2015Training Deep Gaussian Processes using Stochastic Expectation Propagation and Probabilistic BackpropagationTD Bui, JM Hernández

2015Accurate Object Detection and Semantic Segmentation using Gaussian Mixture Model and CNNS Jain, S Dehriya, YK Jain

2014Cross Modal Deep Model and Gaussian Process Based Model for MSR-Bing ChallengeJ Wang, C Kang, Y He, S Xiang, C Pan

2014Non-negative Factor Analysis of Gaussian Mixture Model Weight Adaptation for Language and Dialect RecognitionJ Glass

2014Gaussian Process Models with Parallelization and GPU accelerationZ Dai, A Damianou, J Hensman, N Lawrence

2014Parametric Speech Synthesis Using Local and Global Sparse GaussianT Koriyama, T Nose, T Kobayashi

2014On the Link Between Gaussian Homotopy Continuation and Convex EnvelopesH Mobahi, JW Fisher III

2014Improving Deep Neural Networks Using State Projection Vectors Of Subspace Gaussian Mixture Model As FeaturesM Karthick, S Umesh

2014A Theoretical Analysis of Optimization by Gaussian ContinuationH Mobahi, JW Fisher III

2014Factoring Variations in Natural Images with Deep Gaussian Mixture ModelsA van den Oord, B Schrauwen

2014Feature representation with Deep Gaussian processes

AIArtificial Intelligencedeep learningGaussian Process

引用網(wǎng)址

https://amundtveit.com/2016/12/02/deep-learning-with-gaussian-process/

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末于宙,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌卜朗,老刑警劉巖,帶你破解...
    沈念sama閱讀 212,383評論 6 493
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異咆槽,居然都是意外死亡,警方通過查閱死者的電腦和手機(jī)圈纺,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 90,522評論 3 385
  • 文/潘曉璐 我一進(jìn)店門秦忿,熙熙樓的掌柜王于貴愁眉苦臉地迎上來麦射,“玉大人,你說我怎么就攤上這事灯谣∏鼻铮” “怎么了?”我有些...
    開封第一講書人閱讀 157,852評論 0 348
  • 文/不壞的土叔 我叫張陵胎许,是天一觀的道長峻呛。 經(jīng)常有香客問我,道長辜窑,這世上最難降的妖魔是什么钩述? 我笑而不...
    開封第一講書人閱讀 56,621評論 1 284
  • 正文 為了忘掉前任,我火速辦了婚禮穆碎,結(jié)果婚禮上牙勘,老公的妹妹穿的比我還像新娘。我一直安慰自己所禀,他們只是感情好方面,可當(dāng)我...
    茶點(diǎn)故事閱讀 65,741評論 6 386
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著色徘,像睡著了一般葡幸。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上贺氓,一...
    開封第一講書人閱讀 49,929評論 1 290
  • 那天,我揣著相機(jī)與錄音床蜘,去河邊找鬼辙培。 笑死,一個(gè)胖子當(dāng)著我的面吹牛邢锯,可吹牛的內(nèi)容都是我干的扬蕊。 我是一名探鬼主播,決...
    沈念sama閱讀 39,076評論 3 410
  • 文/蒼蘭香墨 我猛地睜開眼丹擎,長吁一口氣:“原來是場噩夢啊……” “哼尾抑!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起蒂培,我...
    開封第一講書人閱讀 37,803評論 0 268
  • 序言:老撾萬榮一對情侶失蹤再愈,失蹤者是張志新(化名)和其女友劉穎,沒想到半個(gè)月后护戳,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體翎冲,經(jīng)...
    沈念sama閱讀 44,265評論 1 303
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 36,582評論 2 327
  • 正文 我和宋清朗相戀三年媳荒,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了抗悍。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片驹饺。...
    茶點(diǎn)故事閱讀 38,716評論 1 341
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖缴渊,靈堂內(nèi)的尸體忽然破棺而出赏壹,到底是詐尸還是另有隱情,我是刑警寧澤衔沼,帶...
    沈念sama閱讀 34,395評論 4 333
  • 正文 年R本政府宣布蝌借,位于F島的核電站,受9級特大地震影響俐巴,放射性物質(zhì)發(fā)生泄漏骨望。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 40,039評論 3 316
  • 文/蒙蒙 一欣舵、第九天 我趴在偏房一處隱蔽的房頂上張望擎鸠。 院中可真熱鬧,春花似錦缘圈、人聲如沸劣光。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,798評論 0 21
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽绢涡。三九已至,卻和暖如春遣疯,著一層夾襖步出監(jiān)牢的瞬間雄可,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 32,027評論 1 266
  • 我被黑心中介騙來泰國打工缠犀, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留数苫,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 46,488評論 2 361
  • 正文 我出身青樓辨液,卻偏偏與公主長得像虐急,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個(gè)殘疾皇子滔迈,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 43,612評論 2 350

推薦閱讀更多精彩內(nèi)容

  • 今天中午我們兩像打了雞血 兩個(gè)傻逼就是兩個(gè)raper 這個(gè)feel絕了 我的Style絕了 我的創(chuàng)意絕了 我?guī)洷?..
    每天都要寫東西的黑文閱讀 596評論 0 1
  • 邁入大學(xué)校門止吁,并不如預(yù)期般,狹小的校園行走著各色人物燎悍,半月以來也是感覺到自己有了變化敬惦,漸漸懂得一些人生的道理,希望...
    撲滿閱讀 556評論 0 1
  • 這是一部由三個(gè)再次相見的主題為故事組成的電影,三個(gè)故事分別講述了親情,友情(同志愛情)和愛情抗蠢。三個(gè)故事都由陳柏霖?fù)?dān)...
    Younger自然醒閱讀 1,127評論 0 3
  • 仿古畫作畫步驟 一? 選擇深仿古宣紙举哟,不洇墨的那種。紙不要太大迅矛,35X50比較合適妨猩。在紙上用鉛筆大致打個(gè)底稿。 二...
    渡岸孤山閱讀 546評論 16 27
  • 一秽褒、 我在人海里來來去去好多年只為了 等待你的出現(xiàn) 二壶硅、 所謂旅行就是陪著喜歡的人去想去的地方 三、 我想了又想三...
    北國異鄉(xiāng)人閱讀 1,596評論 38 27