復現(xiàn)Cell附圖 |類器官的單細胞分析

大家好!我們又見面啦早龟!今兒帶領(lǐng)大家復現(xiàn)一個小圖。

這篇文章發(fā)表于2020年4月24日的Cell主刊,題為Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2使套,其中作者利用類器官的單細胞分析為整個文章做到了錦上添花!

這篇文章發(fā)表前鞠柄,已經(jīng)有研究報道ACE2(angiotensin converting enzyme 2)是嚴重急性呼吸綜合征冠狀病毒(SARS-CoV)的關(guān)鍵受體侦高,并且ACE2可以保護肺臟免受傷害。ACE2現(xiàn)在也被確定為SARS-CoV-2感染的關(guān)鍵受體厌杜,并且有人提出抑制這種相互作用可以用于治療COVID-19患者的想法奉呛。但是,人類重組可溶性ACE2(hrsACE2)是否會阻止SARS-CoV-2的生長還尚不清楚夯尽。該團隊就這一問題研究發(fā)現(xiàn)hrsACE2抑制SARS-CoV-2感染呈現(xiàn)劑量依賴性瞧壮,SARS-CoV-2可以直接感染人血管類器官和腎臟類器官,并且可以被hrsACE2所抑制匙握。文章總結(jié)得到hrsACE2可以顯著阻斷SARS-CoV-2感染的早期階段咆槽。

作者使用單細胞轉(zhuǎn)錄組測序的原因非常清晰,就是腎臟類器官ACE2的表達方面與正常細胞相同圈纺,在近端小管和足細胞II細胞亞群中分別存在表達ACE2的細胞罗晕,其中近端小管的標記基因為SLC3A1SLC27A2济欢,足細胞的標記基因為PODXLNPHS1NPHS2小渊,說明利用類器官進行實驗的可靠性法褥。(說點別的,我第一次接觸這個概念時以為類器官指的是在器官體型上會非常相似酬屉,很是驚奇半等,后來得知類器官其實就是將病人的細胞進行培養(yǎng),具有3D效果呐萨,并且能夠重現(xiàn)對應器官的部分功能)

下面就是本次要復現(xiàn)的圖Figure S2

Figure S2. Single-Cell RNA-Seq Analysis of Kidney Organoids Reveals ACE2 Expression in Proximal Tubule Cells, Related to Figure 4

(A) UMAP plot displaying the results after unbiased clustering. Subpopulations of renal endothelial-like, mesenchymal, proliferating, podocyte and tubule cells were identified.
(B) Expression of ACE2 projected in the UMAP reduction.
(C) Expression of different cellular markers: SLC3A1, SLC27A2 (Proximal Tubule); PODXL, NPHS1, NPHS2 (Podocyte); CLDN4, MAL (Loop of Henle) and CD93 (Renal Endothelial-like cells).

Figure 4. SARS-CoV-2 Infections of Human Kidney Organoids??

(A)?Representative images of a kidney organoid at day 20 of differentiation visualized using light microscopy (top left inset; scale bar, 100 μm) and confocal microscopy. Confocal microscopy images show tubular-like structures labeled with Lotus tetraglobus lectin (LTL, in green) and podocyte-like cells showing positive staining for nephrin (in turquoise). Laminin (in red) was used as a basement membrane marker. DAPI labels nuclei. A magnified view of the boxed region shows a detail of tubular structures. Scale bars, 250 and 100 μm, respectively.
(B)?Recovery of viral RNA in the kidney organoids at day 6 dpi with SARS-CoV-2. Data are represented as mean ± SD.
(C)?Determination of progeny virus. Supernatants of SARS-CoV-2 infected kidney organoids were collected 6 dpi and then used to infect Vero E6 cells. After 48 h, Vero E6 cells were washed and viral RNA assessed by qRT-PCR. The data show that infected kidney organoids can produce progeny SARS-CoV-2 viruses, depending on the initial level of infection. Data are represented as mean ± SD.
(D)?Effect of hrsACE2 on SARS-CoV-2 infections kidney organoids. Organoids were infected with a mix of 106 infectious viral particles and hrsACE2 for 1 h. 3 dpi, levels of viral RNA were assessed by qRT-PCR. hrsACE2 significantly decreased the level of SARS-CoV-2 infections in the kidney organoids. Data are represented as mean ± SD (Student’s t test: ?p < 0.05).

測序數(shù)據(jù)分析介紹

1.工具:Chromium Single Cell 3′ Library
2.篩選:668 < UMIs per cell < 23101, 489 < Genes per cell < 5651 and % UMIs assigned to mitochondrial genes < 50.
3.降維及聚類:PCs=20,Resolution=0.44.細胞分型:KIT (Kidney Interactive Transcriptomics webpage )(http://humphreyslab.com/SingleCell/).

首先需要下載rawdata:GSE147863(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147863) (建議使用VPN下載)

加載R包

library(Seurat)

使用Read10X_h5讀入數(shù)據(jù)

KidneyOrganoid<-Read10X_h5("KidneyOrganoid_FilteredGeneBCMatrices.h5")

建立seurat對象

KidneyOrganoid <- CreateSeuratObject(counts = KidneyOrganoid, project = "KidneyOrganoid_ACE2", min.cells = 3, min.features = 400)KidneyOrganoid[["percent.mt"]] <- PercentageFeatureSet(KidneyOrganoid, pattern = "^MT-") # 計算線粒體基因比例

QC

## QC Metrics PlotsVlnPlot(KidneyOrganoid, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3,pt.size = 0.3)
## Get QC Thresholds
quantile(KidneyOrganoid@meta.data$nCount_RNA,c(0.025,0.975))quantile(KidneyOrganoid@meta.data$nFeature_RNA,c(0.025,0.975))

QC plots

## QC Plots
plot(KidneyOrganoid@meta.data$nCount_RNA,KidneyOrganoid@meta.data$nFeature_RNA,pch=16,cex=0.7,bty="n")abline(h=c(488,5653),v=c(667,23108),lty=2,lwd=1,col="red")

按照QC參數(shù)進行過濾

## Filtering based on QC parametersKidneyOrganoid <- subset(KidneyOrganoid, subset = nFeature_RNA > 488 & nFeature_RNA < 5653 & nCount_RNA > 667 & nCount_RNA < 23108 & percent.mt < 50)

歸一化及標準化

## Log Normalization
KidneyOrganoid<-NormalizeData(KidneyOrganoid)

## Scale DataKidneyOrganoid <- ScaleData(KidneyOrganoid, features = rownames(KidneyOrganoid))

計算細胞周期

## Cell Cycle Effect
KidneyOrganoid<-CellCycleScoring(KidneyOrganoid,s.features = cc.genes$s.genes,g2m.features = cc.genes$g2m.genes)
KidneyOrganoid <- RunPCA(KidneyOrganoid, features = unlist(cc.genes))DimPlot(KidneyOrganoid, reduction = "pca",dims = c(1,2),group.by = "Phase")

去批次效應

發(fā)現(xiàn)細胞周期對細胞分群具有一定的影響杀饵,進行去批次:

## SCTransformKidneyOrganoid<-SCTransform(KidneyOrganoid,vars.to.regress = c("S.Score","G2M.Score","percent.mt","nFeature_RNA"))

重新PCA

## PCA
KidneyOrganoid <- RunPCA(KidneyOrganoid, features = VariableFeatures(object = KidneyOrganoid))
DimPlot(KidneyOrganoid, reduction = "pca",dims = c(1,2))

## Some Plots
VizDimLoadings(KidneyOrganoid, dims = 1:2, reduction = "pca")DimPlot(KidneyOrganoid, reduction = "pca",dims = c(1,2))

滾石圖

## Selecting PCA ComponentsElbowPlot(KidneyOrganoid,ndims = 30)

聚類可視化

## Clustering
KidneyOrganoid <- FindNeighbors(KidneyOrganoid, dims = 1:20)
KidneyOrganoid <- FindClusters(KidneyOrganoid, resolution = 0.4)

# Non Linear Dimensional Reduction
KidneyOrganoid <- RunUMAP(KidneyOrganoid, dims = 1:20)

# UMAP plot
colss<-c("#A6CEE3", "#1F78B4", "#08306B", "#B2DF8A", "#006D2C", "#8E0152",
"#DE77AE", "#CAB2D6", "#6A3D9A", "#FB9A99", "#E31A1C", "#B15928",
"#619CFF","#FF67A4","#00BCD8")
DimPlot(KidneyOrganoid, reduction = "umap",label = T,cols=colss)

確實是很像哦。谬擦。切距。。再看看基因的表達:

# Feature Plots on interesting genes
FeaturePlot(KidneyOrganoid,c("ACE2"),cols = c("lightgray","red"),order = T)FeaturePlot(KidneyOrganoid,c("SLC3A1","SLC27A2","PODXL","NPHS2","NPHS1","CLDN4","MAL","CD93"),cols = c("lightgray","red"),order = T)
# 尋找高變基因KidneyOrganoid.markers <- FindAllMarkers(KidneyOrganoid, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)

作者將源代碼放在https://github.com/jpromeror/SC_KidneyOrganoid_ACE2 惨远,大家可以試一試哈谜悟!

參考文獻

Monteil, Vanessa, et al. “Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2.” Cell (2020).


最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市北秽,隨后出現(xiàn)的幾起案子葡幸,更是在濱河造成了極大的恐慌,老刑警劉巖贺氓,帶你破解...
    沈念sama閱讀 206,013評論 6 481
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件蔚叨,死亡現(xiàn)場離奇詭異,居然都是意外死亡辙培,警方通過查閱死者的電腦和手機蔑水,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 88,205評論 2 382
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來扬蕊,“玉大人肤粱,你說我怎么就攤上這事〕啵” “怎么了领曼?”我有些...
    開封第一講書人閱讀 152,370評論 0 342
  • 文/不壞的土叔 我叫張陵,是天一觀的道長蛮穿。 經(jīng)常有香客問我庶骄,道長,這世上最難降的妖魔是什么践磅? 我笑而不...
    開封第一講書人閱讀 55,168評論 1 278
  • 正文 為了忘掉前任单刁,我火速辦了婚禮,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘羔飞。我一直安慰自己肺樟,他們只是感情好,可當我...
    茶點故事閱讀 64,153評論 5 371
  • 文/花漫 我一把揭開白布逻淌。 她就那樣靜靜地躺著么伯,像睡著了一般。 火紅的嫁衣襯著肌膚如雪卡儒。 梳的紋絲不亂的頭發(fā)上田柔,一...
    開封第一講書人閱讀 48,954評論 1 283
  • 那天,我揣著相機與錄音骨望,去河邊找鬼硬爆。 笑死,一個胖子當著我的面吹牛擎鸠,可吹牛的內(nèi)容都是我干的缀磕。 我是一名探鬼主播,決...
    沈念sama閱讀 38,271評論 3 399
  • 文/蒼蘭香墨 我猛地睜開眼劣光,長吁一口氣:“原來是場噩夢啊……” “哼袜蚕!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起赎线,我...
    開封第一講書人閱讀 36,916評論 0 259
  • 序言:老撾萬榮一對情侶失蹤廷没,失蹤者是張志新(化名)和其女友劉穎糊饱,沒想到半個月后垂寥,有當?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 43,382評論 1 300
  • 正文 獨居荒郊野嶺守林人離奇死亡另锋,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 35,877評論 2 323
  • 正文 我和宋清朗相戀三年滞项,在試婚紗的時候發(fā)現(xiàn)自己被綠了。 大學時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片夭坪。...
    茶點故事閱讀 37,989評論 1 333
  • 序言:一個原本活蹦亂跳的男人離奇死亡文判,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出室梅,到底是詐尸還是另有隱情戏仓,我是刑警寧澤,帶...
    沈念sama閱讀 33,624評論 4 322
  • 正文 年R本政府宣布亡鼠,位于F島的核電站赏殃,受9級特大地震影響,放射性物質(zhì)發(fā)生泄漏间涵。R本人自食惡果不足惜仁热,卻給世界環(huán)境...
    茶點故事閱讀 39,209評論 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望勾哩。 院中可真熱鬧抗蠢,春花似錦举哟、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,199評論 0 19
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至诬乞,卻和暖如春册赛,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背震嫉。 一陣腳步聲響...
    開封第一講書人閱讀 31,418評論 1 260
  • 我被黑心中介騙來泰國打工森瘪, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人票堵。 一個月前我還...
    沈念sama閱讀 45,401評論 2 352
  • 正文 我出身青樓扼睬,卻偏偏與公主長得像,于是被迫代替她去往敵國和親悴势。 傳聞我的和親對象是個殘疾皇子窗宇,可洞房花燭夜當晚...
    茶點故事閱讀 42,700評論 2 345