什么是貝塞爾曲線,它能夠做什么瘫怜?
貝塞爾曲線的名稱來源于一位就職于雷諾的法國工程師Pierre Bézier,他在1962年開始對貝塞爾曲線做了廣泛的宣傳,他使用這種只需要很少的控制點就能生成復(fù)雜平滑曲線的方法來進行汽車車體的工業(yè)設(shè)計饵溅,因為它控制簡便卻具有極強的描述能力,所以在工業(yè)設(shè)計和計算機圖形學(xué)等相關(guān)領(lǐng)域得到了廣泛應(yīng)用妇萄,比如我們電腦常用的繪圖軟件PhotoShop里的鋼筆工具蜕企,這也是貝塞爾曲線的應(yīng)用之一。
簡單點來說冠句,貝塞爾曲線就是能用數(shù)學(xué)公式將一條曲線很精準(zhǔn)的表現(xiàn)出來轻掩。
那么在Android開發(fā)中,貝塞爾曲線可以幫我們做出什么效果呢懦底?這里舉幾個例子唇牧,簡單點的它可以幫助我們做出很自然的平滑動畫,比如在一個頁面中畫出波浪動畫,餓了么購物車的商品加入動畫等丐重,復(fù)雜點的比如QQ消息氣泡的拖拽消失等腔召。
關(guān)于貝塞爾曲線,我們需要知道什么扮惦?
首先我們需要知道這幾個詞:
數(shù)據(jù)點:一條路徑的起始點和結(jié)束點
控制點:決定一條路徑的曲線軌跡臀蛛,根據(jù)控制點的個數(shù)我們可以把貝塞爾曲線分成一階、二階崖蜜、三階和多階貝塞爾曲線浊仆。
其中n階貝塞爾曲線=n-1個控制點,也就是一階貝塞爾曲線是0個控制點也就是一條直線纳猪,二階貝塞爾曲線是1個控制點氧卧,以此類推。
在Android開發(fā)中氏堤,系統(tǒng)已經(jīng)幫我們封裝好了二階和三階的對應(yīng)實現(xiàn)方法沙绝,我們只管調(diào)用就行,當(dāng)然在開發(fā)中鼠锈,我們有時會遇到需要實現(xiàn)多階貝塞爾曲線的情況闪檬,這時我們可以把多階進行分解,變成多個二階或者三階的貝塞爾曲線购笆,再以后的博客里我會再提到粗悯,這里先做一個入門的介紹,畢竟不能一口氣吃成大胖子同欠。
來看下關(guān)于貝塞爾曲線的展示:
一階貝塞爾曲線:
給定對應(yīng)的P0和P1样傍,分別是起始點和結(jié)束點,對應(yīng)的表達式:
二階貝塞爾曲線:
給定對應(yīng)的P0和P2铺遂,分別是起始點和結(jié)束點衫哥,P1為控制點,對應(yīng)的表達式:
三階貝塞爾曲線:
給定對應(yīng)的P0和P3襟锐,分別是起始點和結(jié)束點撤逢,P1,P2為控制點粮坞,對應(yīng)的表達式:
以上的曲線圖紅色軌跡即為貝塞爾曲線運動軌跡,而綠色的軌跡即為貝塞爾曲線的切線蚊荣,想了解更多的朋友可以參考下維基百科: 貝塞爾曲線
這里有一個貝塞爾曲線的動態(tài)演示圖,大家玩玩感受一下:貝塞爾曲線的動態(tài)演示圖
具體代碼實現(xiàn)
好了莫杈,大概介紹完貝塞爾曲線的概念后互例,作為開發(fā)者,應(yīng)該手癢癢的想拿去鍵盤用代碼實現(xiàn)一波了吧姓迅?
由于一階貝塞爾曲線沒有控制點敲霍,就是一條直線俊马,沒什么好說的 丁存,這里我打算從二階貝塞爾曲線開始說起肩杈,谷歌官方對開發(fā)者還是很不錯的,已經(jīng)提前幫我們封裝好關(guān)于二階和三階貝塞爾曲線的實現(xiàn)方法解寝,我們先來看下API:
二階貝塞爾曲線:
對應(yīng)的實現(xiàn)方式是:Path.quadTo和Path.rQuadTo扩然,它們分別對應(yīng)的是絕對坐標(biāo)和相對坐標(biāo),兩者是可以互相轉(zhuǎn)換的聋伦。
/**
* Add a quadratic bezier from the last point, approaching control point
* (x1,y1), and ending at (x2,y2). If no moveTo() call has been made for
* this contour, the first point is automatically set to (0,0).
*
* @param x1 The x-coordinate of the control point on a quadratic curve
* @param y1 The y-coordinate of the control point on a quadratic curve
* @param x2 The x-coordinate of the end point on a quadratic curve
* @param y2 The y-coordinate of the end point on a quadratic curve
*/
public void quadTo(float x1, float y1, float x2, float y2) {
isSimplePath = false;
native_quadTo(mNativePath, x1, y1, x2, y2);
}
首先我們先運用Path.moveTo將坐標(biāo)移動到起始點夫偶,然后這里x1,y1代表的是控制點的x觉增,y坐標(biāo)兵拢,x2,y2代表結(jié)束點逾礁,我們來寫個例子:
package com.lcw.view;
import android.content.Context;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Path;
import android.util.AttributeSet;
import android.util.DisplayMetrics;
import android.view.MotionEvent;
import android.view.View;
import android.view.WindowManager;
/**
* 自定義View(二階貝塞爾曲線)
* Create by: chenwei.li
* Date: 2017/4/21
* Time: 下午11:47
* Email: lichenwei.me@foxmail.com
*/
public class BezierQuadView extends View {
//開始點和結(jié)束點
private int mStartXPoint;
private int mStartYPoint;
private int mEndXPoint;
private int mEndYPoint;
//控制點
private int mConXPoint;
private int mConYPoint;
//路徑和畫筆
private Path mPath;
private Paint mPaint;
//輔助線畫筆,寫字畫筆
private Paint mLinePaint;
private Paint mTextPaint;
public BezierQuadView(Context context) {
super(context);
init(context);
}
public BezierQuadView(Context context, AttributeSet attrs) {
super(context, attrs);
init(context);
}
public BezierQuadView(Context context, AttributeSet attrs, int defStyleAttr) {
super(context, attrs, defStyleAttr);
init(context);
}
/**
* 進行初始化的一些操作
*/
private void init(Context context) {
//獲取屏幕的寬高
WindowManager windowManager = (WindowManager) context.getSystemService(Context.WINDOW_SERVICE);
DisplayMetrics displayMetrics = new DisplayMetrics();
windowManager.getDefaultDisplay().getMetrics(displayMetrics);
int screenHeight = displayMetrics.heightPixels;
int screenWidth = displayMetrics.widthPixels;
//設(shè)置各點的位置
mStartXPoint = screenWidth / 4;
mStartYPoint = screenHeight / 2;
mEndXPoint = screenWidth * 3 / 4;
mEndYPoint = screenHeight / 2;
mConXPoint = screenWidth / 2;
mConYPoint = screenHeight / 2 - 400;
//路徑,畫筆設(shè)置
mPath = new Path();
mPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
mPaint.setColor(Color.BLUE);
mPaint.setStyle(Paint.Style.STROKE);
mPaint.setStrokeWidth(8);
//輔助線畫筆
mLinePaint = new Paint(Paint.ANTI_ALIAS_FLAG);
mLinePaint.setColor(Color.GRAY);
mLinePaint.setStyle(Paint.Style.STROKE);
mLinePaint.setStrokeWidth(3);
//寫字畫筆
mTextPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
mTextPaint.setColor(Color.BLACK);
mTextPaint.setStyle(Paint.Style.STROKE);
mTextPaint.setTextSize(20);
}
@Override
protected void onDraw(Canvas canvas) {
super.onDraw(canvas);
mPath.reset();
//賽貝爾曲線
mPath.moveTo(mStartXPoint, mStartYPoint);
mPath.quadTo(mConXPoint, mConYPoint, mEndXPoint, mEndYPoint);
canvas.drawPath(mPath, mPaint);
//輔助線
canvas.drawLine(mStartXPoint, mStartYPoint, mConXPoint, mConYPoint, mLinePaint);
canvas.drawLine(mConXPoint, mConYPoint, mEndXPoint, mEndYPoint, mLinePaint);
//文字
canvas.drawPoint(mStartXPoint, mStartYPoint, mPaint);
canvas.drawText("起始點", mStartXPoint, mStartYPoint + 30, mTextPaint);
canvas.drawPoint(mEndXPoint, mEndYPoint, mPaint);
canvas.drawText("結(jié)束點", mEndXPoint, mEndYPoint + 30, mTextPaint);
canvas.drawPoint(mConXPoint, mConYPoint, mPaint);
canvas.drawText("控制點", mConXPoint, mConYPoint - 30, mTextPaint);
}
@Override
public boolean onTouchEvent(MotionEvent event) {
switch (event.getAction()){
case MotionEvent.ACTION_MOVE:
mConXPoint= (int) event.getX();
mConYPoint=(int)event.getY();
invalidate();
break;
}
return true;
}
}
三階貝塞爾曲線:
對應(yīng)的實現(xiàn)方式是:Path.cubicTo和Path.rCubicTo说铃,它們分別對應(yīng)的是絕對坐標(biāo)和相對坐標(biāo),兩者是可以互相轉(zhuǎn)換的嘹履。
/**
* Add a cubic bezier from the last point, approaching control points
* (x1,y1) and (x2,y2), and ending at (x3,y3). If no moveTo() call has been
* made for this contour, the first point is automatically set to (0,0).
*
* @param x1 The x-coordinate of the 1st control point on a cubic curve
* @param y1 The y-coordinate of the 1st control point on a cubic curve
* @param x2 The x-coordinate of the 2nd control point on a cubic curve
* @param y2 The y-coordinate of the 2nd control point on a cubic curve
* @param x3 The x-coordinate of the end point on a cubic curve
* @param y3 The y-coordinate of the end point on a cubic curve
*/
public void cubicTo(float x1, float y1, float x2, float y2,
float x3, float y3) {
isSimplePath = false;
native_cubicTo(mNativePath, x1, y1, x2, y2, x3, y3);
}
來看下運行效果圖:
首先我們先運用Path.moveTo將坐標(biāo)移動到起始點腻扇,然后這里x1,y1代表的是控制點1的x砾嫉,y坐標(biāo)幼苛,x2,y2代表的是控制點2的x焕刮,y坐標(biāo)舶沿,x3,y3代表結(jié)束點配并,我們來寫個例子:
package com.lcw.view;
import android.content.Context;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Path;
import android.util.AttributeSet;
import android.util.DisplayMetrics;
import android.view.View;
import android.view.WindowManager;
/**
* 自定義View(三階貝塞爾曲線)
* Create by: chenwei.li
* Date: 2017/4/21
* Time: 下午11:47
* Email: lichenwei.me@foxmail.com
*/
public class BezierCubicView extends View {
//開始點和結(jié)束點
private int mStartXPoint;
private int mStartYPoint;
private int mEndXPoint;
private int mEndYPoint;
//控制點
private int mConOneXPoint;
private int mConOneYPoint;
private int mConTwoXPoint;
private int mConTwoYPoint;
//路徑和畫筆
private Path mPath;
private Paint mPaint;
//輔助線畫筆,寫字畫筆
private Paint mLinePaint;
private Paint mTextPaint;
public BezierCubicView(Context context) {
super(context);
init(context);
}
public BezierCubicView(Context context, AttributeSet attrs) {
super(context, attrs);
init(context);
}
public BezierCubicView(Context context, AttributeSet attrs, int defStyleAttr) {
super(context, attrs, defStyleAttr);
init(context);
}
/**
* 進行初始化的一些操作
*/
private void init(Context context) {
//獲取屏幕的寬高
WindowManager windowManager = (WindowManager) context.getSystemService(Context.WINDOW_SERVICE);
DisplayMetrics displayMetrics = new DisplayMetrics();
windowManager.getDefaultDisplay().getMetrics(displayMetrics);
int screenHeight = displayMetrics.heightPixels;
int screenWidth = displayMetrics.widthPixels;
//設(shè)置各點的位置
mStartXPoint = screenWidth / 4;
mStartYPoint = screenHeight / 2;
mEndXPoint = screenWidth * 3 / 4;
mEndYPoint = screenHeight / 2;
mConOneXPoint = screenWidth / 2 - 300;
mConOneYPoint = screenHeight / 2 - 400;
mConTwoXPoint = screenWidth / 2 + 100;
mConTwoYPoint = screenHeight / 2 - 400;
//路徑,畫筆設(shè)置
mPath = new Path();
mPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
mPaint.setColor(Color.BLUE);
mPaint.setStyle(Paint.Style.STROKE);
mPaint.setStrokeWidth(8);
//輔助線畫筆
mLinePaint = new Paint(Paint.ANTI_ALIAS_FLAG);
mLinePaint.setColor(Color.GRAY);
mLinePaint.setStyle(Paint.Style.STROKE);
mLinePaint.setStrokeWidth(3);
//寫字畫筆
mTextPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
mTextPaint.setColor(Color.BLACK);
mTextPaint.setStyle(Paint.Style.STROKE);
mTextPaint.setTextSize(20);
}
@Override
protected void onDraw(Canvas canvas) {
super.onDraw(canvas);
//賽貝爾曲線
mPath.moveTo(mStartXPoint, mStartYPoint);
mPath.cubicTo(mConOneXPoint, mConOneYPoint,mConTwoXPoint,mConTwoYPoint,mEndXPoint, mEndYPoint);
canvas.drawPath(mPath, mPaint);
//輔助線
canvas.drawLine(mStartXPoint, mStartYPoint, mConOneXPoint, mConOneYPoint, mLinePaint);
canvas.drawLine(mConOneXPoint, mConOneYPoint, mConTwoXPoint, mConTwoYPoint, mLinePaint);
canvas.drawLine(mConTwoXPoint, mConTwoYPoint, mEndXPoint, mEndYPoint, mLinePaint);
//文字
canvas.drawPoint(mStartXPoint, mStartYPoint, mPaint);
canvas.drawText("起始點", mStartXPoint, mStartYPoint + 30, mTextPaint);
canvas.drawPoint(mEndXPoint, mEndYPoint, mPaint);
canvas.drawText("結(jié)束點", mEndXPoint, mEndYPoint + 30, mTextPaint);
canvas.drawPoint(mConOneXPoint, mConOneYPoint, mPaint);
canvas.drawText("控制點1", mConOneXPoint, mConOneYPoint - 30, mTextPaint);
canvas.drawPoint(mConTwoXPoint, mConTwoYPoint, mPaint);
canvas.drawText("控制點2", mConTwoXPoint, mConTwoYPoint - 30, mTextPaint);
}
}
來看下運行效果圖:
現(xiàn)在括荡,我們監(jiān)聽下屏幕的觸摸事件,讓控制點隨著我們手指的移動而移動荐绝,看看會是什么樣的效果:
@Override
public boolean onTouchEvent(MotionEvent event) {
switch (event.getAction()){
case MotionEvent.ACTION_MOVE:
mConXPoint= (int) event.getX();
mConYPoint=(int)event.getY();
invalidate();
break;
}
return true;
}
@Override
public boolean onTouchEvent(MotionEvent event) {
switch (event.getAction() & MotionEvent.ACTION_MASK) {
case MotionEvent.ACTION_POINTER_DOWN:
mFlag = true;
break;
case MotionEvent.ACTION_POINTER_UP:
mFlag = false;
break;
case MotionEvent.ACTION_MOVE:
mConOneXPoint = (int) event.getX(0);
mConOneYPoint = (int) event.getY(0);
if (mFlag) {
mConTwoXPoint = (int) event.getY(1);
mConTwoYPoint = (int) event.getY(1);
}
invalidate();
break;
}
return true;
}
怎么樣一汽,曲線的繪制很自然吧,這就是貝塞爾曲線的入門使用了低滩。入門篇到這里就結(jié)束了召夹,下次給朋友們帶來貝塞爾曲線的進階篇。
源碼下載:
這里附上源碼地址(歡迎Star恕沫,歡迎Fork):源碼下載