一 DeepFace(CVPR2014)
《DeepFace: Closing the Gap to Human-Level Performance in Face Verification》
- 提出一個(gè)3D人臉對齊的方法讥蟆。
- 提出一個(gè)采用深度網(wǎng)絡(luò)得到人臉特征的方法遍膜,深度學(xué)習(xí)人臉識別開山之作绩卤。
二 DeepID1(CVPR2014)
《Deep Learning Face Representation from Predicting 10,000 Classes》
- 增加深度模型分類類別數(shù)目能有效提升模型性能。
- 用于人臉識別的特征必須是分類之間的DeepID壹甥,不能用softmax layer的輸出。
- 訓(xùn)練數(shù)據(jù)越多壶熏,采用的patches越多句柠,模型性能越好。
- 由于提出的網(wǎng)絡(luò)結(jié)構(gòu)最后一個(gè)卷積層非常芯贸取(1*2的feature map)俄占,所以最終全聯(lián)接層(DeepID)同時(shí)連接到最后一個(gè)卷積層和它前面的卷積層。
三 DeepID2(NIPS 2014)
《Deep Learning Face Representation by Joint Identification-Verification》
- face identification任務(wù)拉開類間的距離淆衷,face verification任務(wù)減小類內(nèi)距離缸榄。
- 當(dāng)face identification任務(wù)權(quán)重為1, face verification任務(wù)權(quán)重為0.05時(shí)效果最好祝拯。
四 DeepID2+(CVPR2015)
《Deeply learned face representations are sparse, selective, and robust》
- 增加特征的維度甚带。
- 對前面的卷積層添加監(jiān)督信息。
- 神經(jīng)元激活值的稀疏性:每個(gè)圖像大約有一半神經(jīng)元被激活佳头;每個(gè)神經(jīng)元大約有一半圖像會使其激活鹰贵。
- 神經(jīng)元激活值二值化:精度降低不大,說明神經(jīng)元是否被激活比神經(jīng)元具體數(shù)值更為重要康嘉。
- 神經(jīng)元的判別力:DeepID2+特征具有身份和屬性判別力碉输。
- 特征魯棒性:高維全局特征具有良好的遮擋魯棒性。
五 DeepID3(2015)
《DeepID3: Face Recognition with Very Deep Neural Networks》
- 基于VGG和GoogLeNet提出兩種更深的人臉識別網(wǎng)絡(luò)亭珍。
六 triplet loss(CVPR2015)
《FaceNet: A Unified Embedding for Face Recognition and Clustering》
- 提出triplet loss:(alpha是margin敷钾,文中設(shè)為0.2)
- 選擇所有triplets進(jìn)行訓(xùn)練收斂太慢枝哄,所以應(yīng)該選擇hard triplets。在線生成triplets的時(shí)候(在一個(gè)mini-batch中)阻荒,為了得到更好的正樣本對挠锥,需要保證每個(gè)mini-batch中,每個(gè)id均包含一定數(shù)量(比如40)的圖片侨赡。選擇正樣本對的時(shí)候采用全配對的方式(負(fù)樣本還是選擇hard negtives)蓖租,而不是只選擇hard positive pairs,雖然沒對兩種選擇方式進(jìn)行比較羊壹,但是實(shí)踐中發(fā)現(xiàn)全配對更穩(wěn)定蓖宦,在開始訓(xùn)練的時(shí)候收斂稍快。如果選擇hardest negatives會導(dǎo)致在訓(xùn)練初期就陷入局部極小值舶掖,為了避免該問題球昨,可以選擇與anchor距離大于“正例與anchor距離”的hard negatives(semi-hard),而不是hardest negatives眨攘。
七 center loss(ECCV2016)
《A Discriminative Feature Learning Approach for Deep Face Recognition》
- 以softmax loss學(xué)到的特征是可分的主慰,但是依然有顯著的類內(nèi)變化,所以不夠具有辨別力鲫售。
- center loss:
- 如何更新center:基于mini-batch在每一個(gè)iteration中計(jì)算某類別對應(yīng)所有特征的均值作為該類中心共螺。同時(shí)為了避免噪聲數(shù)據(jù),使用一個(gè)標(biāo)量控制類中心的學(xué)習(xí)率情竹。
- 試驗(yàn)參數(shù):center loss權(quán)重=0.003藐不,控制類中心學(xué)習(xí)率的標(biāo)量=0.5。