Inductive and Deductive in Machine Learning

References
https://techvidvan.com/tutorials/types-of-machine-learning/
https://kimola.com/cognitive/resources/how-to-use-machine-learning-in-qualitative-research

Inductive reasoning involves starting from specific premises and forming a general conclusion, while deductive reasoning involves using general premises to form a specific conclusion.

Conclusions reached via deductive reasoning cannot be incorrect if the premises are true. That’s because the conclusion doesn’t contain information that’s not in the premises. Unlike deductive reasoning, a conclusion reached via inductive reasoning goes beyond the information contained within the premises—it’s a generalization, and generalizations aren’t always accurate.

  • Inductive learning

    • Inductive learning involves the creation of a generalized rule for all the data given to the algorithm. In this, we have data as input and the results as output; we have to find the relation between the inputs and outputs.

    • This can be very complex depending on the data. But, it is an effective method used in ML and used in various fields of ML like facial recognition technology, disease cure, and diagnosis, etc. It uses a bottom-up approach.

    • This algorithm is crucial as it gives us a relation between data that has a use for future references. It’s used when human expertise doesn’t work when the outputs are varying etc. In short, we can say that in inductive learning, we generalize conclusions from given facts. For example,

    a. Apple is a fruit.
    b. Apple tastes sweet.
    Conclusion: All fruits taste sweet.

  • Deductive learning

    • Just like Inductive reasoning, deductive learning or reasoning is another form of reasoning. In reality, the reasoning is an AI concept and both inductive and deductive learning are part of it.

    • Unlike inductive learning, which is based on the generalization of specific facts, deductive learning uses the already available facts and information in order to give a valid conclusion. It uses a top-down approach.

    • The one major thing to note is that in deductive learning, the results are certain i.e, it is either yes or no. Whereas it’s probability-based on inductive learning i.e, it can range from strong to weak.

    a. All carnivores eat meat.
    b. Lion is a carnivore.
    Conclusion: – Lion eats meat.

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末奔垦,一起剝皮案震驚了整個濱河市尸疆,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌犯眠,老刑警劉巖症革,帶你破解...
    沈念sama閱讀 221,695評論 6 515
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異量蕊,居然都是意外死亡,警方通過查閱死者的電腦和手機残炮,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 94,569評論 3 399
  • 文/潘曉璐 我一進店門缩滨,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人蛋勺,你說我怎么就攤上這事鸠删≡籼眨” “怎么了?”我有些...
    開封第一講書人閱讀 168,130評論 0 360
  • 文/不壞的土叔 我叫張陵碉怔,是天一觀的道長。 經(jīng)常有香客問我桨踪,道長芹啥,這世上最難降的妖魔是什么铺峭? 我笑而不...
    開封第一講書人閱讀 59,648評論 1 297
  • 正文 為了忘掉前任汽纠,我火速辦了婚禮,結(jié)果婚禮上虱朵,老公的妹妹穿的比我還像新娘。我一直安慰自己絮宁,他們只是感情好服协,可當(dāng)我...
    茶點故事閱讀 68,655評論 6 397
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著蚯涮,像睡著了一般。 火紅的嫁衣襯著肌膚如雪张峰。 梳的紋絲不亂的頭發(fā)上棒旗,一...
    開封第一講書人閱讀 52,268評論 1 309
  • 那天,我揣著相機與錄音铣揉,去河邊找鬼。 笑死敌厘,一個胖子當(dāng)著我的面吹牛朽合,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播曹步,決...
    沈念sama閱讀 40,835評論 3 421
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼尿孔!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起活合,我...
    開封第一講書人閱讀 39,740評論 0 276
  • 序言:老撾萬榮一對情侶失蹤芜辕,失蹤者是張志新(化名)和其女友劉穎尚骄,沒想到半個月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體倔丈,經(jīng)...
    沈念sama閱讀 46,286評論 1 318
  • 正文 獨居荒郊野嶺守林人離奇死亡状蜗,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 38,375評論 3 340
  • 正文 我和宋清朗相戀三年轧坎,在試婚紗的時候發(fā)現(xiàn)自己被綠了宏邮。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片缸血。...
    茶點故事閱讀 40,505評論 1 352
  • 序言:一個原本活蹦亂跳的男人離奇死亡捎泻,死狀恐怖飒炎,靈堂內(nèi)的尸體忽然破棺而出笆豁,到底是詐尸還是另有隱情,我是刑警寧澤闯狱,帶...
    沈念sama閱讀 36,185評論 5 350
  • 正文 年R本政府宣布哄孤,位于F島的核電站,受9級特大地震影響瘦陈,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜双饥,卻給世界環(huán)境...
    茶點故事閱讀 41,873評論 3 333
  • 文/蒙蒙 一咏花、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧昏翰,春花似錦、人聲如沸棚菊。這莊子的主人今日做“春日...
    開封第一講書人閱讀 32,357評論 0 24
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽码邻。三九已至,卻和暖如春像屋,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背己莺。 一陣腳步聲響...
    開封第一講書人閱讀 33,466評論 1 272
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留阵子,地道東北人胁艰。 一個月前我還...
    沈念sama閱讀 48,921評論 3 376
  • 正文 我出身青樓,卻偏偏與公主長得像奈梳,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子攘须,可洞房花燭夜當(dāng)晚...
    茶點故事閱讀 45,515評論 2 359

推薦閱讀更多精彩內(nèi)容