tensorflow objection detection model(網(wǎng)絡(luò)模型加載)

在使用google提供的模型時污茵,可能會報錯舞肆,那就要我們了解程序加載模型的具體細節(jié)碱屁。
訓練的開始語句是

 python train.py --train_dir='train_dir' --pipeline_config_path='pipeline_config_path'

核心調(diào)用的文件就是train.py刁绒。在train.py中通過

model_config, train_config, input_config = get_configs_from_pipeline_file()

獲取配置信息,其中是調(diào)用protobuf進行文件解析坊罢。之后分別得到model_config续担,train_config,input_config(訓練的格式)活孩。
之后通過functools.partial函數(shù)對model_builder.build函數(shù)賦予默認值物遇。通過functools.partial函數(shù)對input_reader_builder.build賦予默認值。train_config是在最后訓練的時候進行傳入憾儒。
生成網(wǎng)絡(luò)模型的代碼為:

def build(model_config, is_training):
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise ValueError('model_config not of type model_pb2.DetectionModel.')
# 獲取配置中的模型種類
  meta_architecture = model_config.WhichOneof('model')
#進行具體加載
  if meta_architecture == 'ssd':
    return _build_ssd_model(model_config.ssd, is_training)
  if meta_architecture == 'faster_rcnn':
    return _build_faster_rcnn_model(model_config.faster_rcnn, is_training)
  raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))

之后以'faster_rcnn模型為例子询兴,進入_build_faster_rcnn_model

def _build_faster_rcnn_model(frcnn_config, is_training):
#構(gòu)建一個Faster R-CNN 或者 R-FCN的檢測模型。
#如果second_stage_box_predictor的類型是rfcn_box_predictor則為R-FCN模型起趾,否則為Faster R-CNN
#frcnn_config 說明模型的結(jié)構(gòu)
#is_training 模型是否用來進行訓練蕉朵。
  #獲取要識別的類數(shù)
  num_classes = frcnn_config.num_classes
 #構(gòu)建圖像歸一化
  image_resizer_fn = image_resizer_builder.build(frcnn_config.image_resizer)
#構(gòu)建前端網(wǎng)絡(luò)結(jié)構(gòu)
  feature_extractor = _build_faster_rcnn_feature_extractor(
      frcnn_config.feature_extractor, is_training)
#是否僅構(gòu)建RPN層
  first_stage_only = frcnn_config.first_stage_only
#構(gòu)建Anchor
  first_stage_anchor_generator = anchor_generator_builder.build(
      frcnn_config.first_stage_anchor_generator)
#帶間隔的卷積,其中的間隔多大
  first_stage_atrous_rate = frcnn_config.first_stage_atrous_rate
#卷積神經(jīng)網(wǎng)絡(luò)的參數(shù)
  first_stage_box_predictor_arg_scope = hyperparams_builder.build(
      frcnn_config.first_stage_box_predictor_conv_hyperparams, is_training)
#第一階段的核大小
  first_stage_box_predictor_kernel_size = (
      frcnn_config.first_stage_box_predictor_kernel_size)
#rpn的輸出深度
  first_stage_box_predictor_depth = frcnn_config.first_stage_box_predictor_depth
#第一階段的最小批次
  first_stage_minibatch_size = frcnn_config.first_stage_minibatch_size
#每一張圖片RPN中正樣本的數(shù)量阳掐。
  first_stage_positive_balance_fraction = (
      frcnn_config.first_stage_positive_balance_fraction)
#第一階段nms得分的閾值
  first_stage_nms_score_threshold = frcnn_config.first_stage_nms_score_threshold
#第一階段nms的IOU的閾值
  first_stage_nms_iou_threshold = frcnn_config.first_stage_nms_iou_threshold
#第一階段最多傳出多少個RPN
  first_stage_max_proposals = frcnn_config.first_stage_max_proposals
#第一階段的定位損失權(quán)重
  first_stage_loc_loss_weight = (
      frcnn_config.first_stage_localization_loss_weight)
#第一階段的物品損失權(quán)重
  first_stage_obj_loss_weight = frcnn_config.first_stage_objectness_loss_weight
#輸出的rpn的大小(寬高相等)
  initial_crop_size = frcnn_config.initial_crop_size
#在maxpool時的核的大小以及步長
  maxpool_kernel_size = frcnn_config.maxpool_kernel_size
  maxpool_stride = frcnn_config.maxpool_stride
#構(gòu)建卷積神經(jīng)網(wǎng)絡(luò)的超參數(shù)
  second_stage_box_predictor = box_predictor_builder.build(
      hyperparams_builder.build,
      frcnn_config.second_stage_box_predictor,
      is_training=is_training,
      num_classes=num_classes)
#第二階段進入的圖片的批次
  second_stage_batch_size = frcnn_config.second_stage_batch_size
#第二階段中圖片中bbox的正樣本的比例
  second_stage_balance_fraction = frcnn_config.second_stage_balance_fraction
#構(gòu)建后處理的模型
  (second_stage_non_max_suppression_fn, second_stage_score_conversion_fn
  ) = post_processing_builder.build(frcnn_config.second_stage_post_processing)
#第二階段的位置和種類的權(quán)重比例
  second_stage_localization_loss_weight = (
      frcnn_config.second_stage_localization_loss_weight)
  second_stage_classification_loss_weight = (
      frcnn_config.second_stage_classification_loss_weight)
#默認不進行困難樣本發(fā)現(xiàn)
  hard_example_miner = None
#但如果配置文件中有hard_example_miner,則進行困難樣本發(fā)現(xiàn)
  if frcnn_config.HasField('hard_example_miner'):
    hard_example_miner = losses_builder.build_hard_example_miner(
        frcnn_config.hard_example_miner,
        second_stage_classification_loss_weight,
        second_stage_localization_loss_weight)
#將配置好的模型放入dict中
  common_kwargs = {
      'is_training': is_training,
      'num_classes': num_classes,
      'image_resizer_fn': image_resizer_fn,
      'feature_extractor': feature_extractor,
      'first_stage_only': first_stage_only,
      'first_stage_anchor_generator': first_stage_anchor_generator,
      'first_stage_atrous_rate': first_stage_atrous_rate,
      'first_stage_box_predictor_arg_scope':
      first_stage_box_predictor_arg_scope,
      'first_stage_box_predictor_kernel_size':
      first_stage_box_predictor_kernel_size,
      'first_stage_box_predictor_depth': first_stage_box_predictor_depth,
      'first_stage_minibatch_size': first_stage_minibatch_size,
      'first_stage_positive_balance_fraction':
      first_stage_positive_balance_fraction,
      'first_stage_nms_score_threshold': first_stage_nms_score_threshold,
      'first_stage_nms_iou_threshold': first_stage_nms_iou_threshold,
      'first_stage_max_proposals': first_stage_max_proposals,
      'first_stage_localization_loss_weight': first_stage_loc_loss_weight,
      'first_stage_objectness_loss_weight': first_stage_obj_loss_weight,
      'second_stage_batch_size': second_stage_batch_size,
      'second_stage_balance_fraction': second_stage_balance_fraction,
      'second_stage_non_max_suppression_fn':
      second_stage_non_max_suppression_fn,
      'second_stage_score_conversion_fn': second_stage_score_conversion_fn,
      'second_stage_localization_loss_weight':
      second_stage_localization_loss_weight,
      'second_stage_classification_loss_weight':
      second_stage_classification_loss_weight,
      'hard_example_miner': hard_example_miner}
#如果第二階段是rfcn的則使用上面這個缭保,否則使用上面這個
  if isinstance(second_stage_box_predictor, box_predictor.RfcnBoxPredictor):
    return rfcn_meta_arch.RFCNMetaArch(
        second_stage_rfcn_box_predictor=second_stage_box_predictor,
        **common_kwargs)
  else:
    return faster_rcnn_meta_arch.FasterRCNNMetaArch(
        initial_crop_size=initial_crop_size,
        maxpool_kernel_size=maxpool_kernel_size,
        maxpool_stride=maxpool_stride,
        second_stage_mask_rcnn_box_predictor=second_stage_box_predictor,
        **common_kwargs)

之后說明每一個子模型的構(gòu)建
首先是image_resizer_builder的模型構(gòu)建

# 構(gòu)建圖片的resize
def build(image_resizer_config):
# 查看類型是否正確
  if not isinstance(image_resizer_config, image_resizer_pb2.ImageResizer):
    raise ValueError('image_resizer_config not of type '
                     'image_resizer_pb2.ImageResizer.')
#查看是否設(shè)置了image_resizer_oneof屬性汛闸,如果有判斷是否為keep_aspect_ratio_resizer
  if image_resizer_config.WhichOneof(
      'image_resizer_oneof') == 'keep_aspect_ratio_resizer':
    #如果是則進行保持圖片比例的縮放,再使用functools.partial對 preprocessor.resize_to_range給默認值艺骂。
    keep_aspect_ratio_config = image_resizer_config.keep_aspect_ratio_resizer
    if not (keep_aspect_ratio_config.min_dimension
            <= keep_aspect_ratio_config.max_dimension):
      raise ValueError('min_dimension > max_dimension')
    return functools.partial(
        preprocessor.resize_to_range,
        min_dimension=keep_aspect_ratio_config.min_dimension,
        max_dimension=keep_aspect_ratio_config.max_dimension)
#如果有image_resizer_oneof屬性诸老,如果有判斷是否為fixed_shape_resizer,即歸一化到固定大小
  if image_resizer_config.WhichOneof(
      'image_resizer_oneof') == 'fixed_shape_resizer':
#如果有則使用functools.partial對preprocessor.resize_image,給默認值钳恕,插值的那種resize
    fixed_shape_resizer_config = image_resizer_config.fixed_shape_resizer
    return functools.partial(preprocessor.resize_image,
                             new_height=fixed_shape_resizer_config.height,
                             new_width=fixed_shape_resizer_config.width)
  raise ValueError('Invalid image resizer option.')

接下來看preprocessor.resize_to_range這個函數(shù)

def resize_to_range(image,
                    masks=None,
                    min_dimension=None,
                    max_dimension=None,
                    align_corners=False):
 #該函數(shù)是將一個圖片resize到給定的大小
#其中别伏,有兩種可能:
#1.如果圖片可以resize到短邊等于給定的值,而長邊不超過給定的max_dimension
#2.將長邊resize到max_dimension忧额。
  if len(image.get_shape()) != 3:
    raise ValueError('Image should be 3D tensor')

  with tf.name_scope('ResizeToRange', values=[image, min_dimension]):
    if image.get_shape().is_fully_defined():
      new_size = _compute_new_static_size(image, min_dimension,
                                          max_dimension)
    else:
      new_size = _compute_new_dynamic_size(image, min_dimension,
                                           max_dimension)
    new_image = tf.image.resize_images(image, new_size,
                                       align_corners=align_corners)

    result = new_image
    if masks is not None:
      new_masks = tf.expand_dims(masks, 3)
      new_masks = tf.image.resize_nearest_neighbor(new_masks, new_size,
                                                   align_corners=align_corners)
      new_masks = tf.squeeze(new_masks, 3)
      result = [new_image, new_masks]

    return result

resize之后就是構(gòu)建faster_rcnn_meta_arch厘肮,也就是進行_build_faster_rcnn_feature_extractor函數(shù)的說明

def _build_faster_rcnn_feature_extractor(
    feature_extractor_config, is_training, reuse_weights=None):
#獲取第一階段的網(wǎng)絡(luò)結(jié)構(gòu),比如:faster_rcnn_resnet101
  feature_type = feature_extractor_config.type
#獲取
#first_stage_features_stride只能等于8或者16睦番,否則會報錯
  first_stage_features_stride = (
      feature_extractor_config.first_stage_features_stride)
#判斷有沒有內(nèi)置的這個特征提取的網(wǎng)絡(luò)
  if feature_type not in FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP:
    raise ValueError('Unknown Faster R-CNN feature_extractor: {}'.format(
        feature_type))
  feature_extractor_class = FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP[
      feature_type]
# 返回了一個初始化了的特征提取
  return feature_extractor_class(
      is_training, first_stage_features_stride, reuse_weights)

加下來是anchor的構(gòu)建

def build(anchor_generator_config):
#構(gòu)建過程二選一类茂,是使用grid_anchor_generator還是ssd_anchor_generator在這里我們看grid_anchor_generator
 if not isinstance(anchor_generator_config,
                   anchor_generator_pb2.AnchorGenerator):
   raise ValueError('anchor_generator_config not of type '
                    'anchor_generator_pb2.AnchorGenerator')
 if anchor_generator_config.WhichOneof(
     'anchor_generator_oneof') == 'grid_anchor_generator':
   grid_anchor_generator_config = anchor_generator_config.grid_anchor_generator
  #使用傳入的參數(shù)對grid_anchor_generator進行初始化,具體的自行看
   return grid_anchor_generator.GridAnchorGenerator(
       scales=[float(scale) for scale in grid_anchor_generator_config.scales],
       aspect_ratios=[float(aspect_ratio)
                      for aspect_ratio
                      in grid_anchor_generator_config.aspect_ratios],
       base_anchor_size=[grid_anchor_generator_config.height,
                         grid_anchor_generator_config.width],
       anchor_stride=[grid_anchor_generator_config.height_stride,
                      grid_anchor_generator_config.width_stride],
       anchor_offset=[grid_anchor_generator_config.height_offset,
                      grid_anchor_generator_config.width_offset])
 elif anchor_generator_config.WhichOneof(
     'anchor_generator_oneof') == 'ssd_anchor_generator':
   ssd_anchor_generator_config = anchor_generator_config.ssd_anchor_generator
   return multiple_grid_anchor_generator.create_ssd_anchors(
       num_layers=ssd_anchor_generator_config.num_layers,
       min_scale=ssd_anchor_generator_config.min_scale,
       max_scale=ssd_anchor_generator_config.max_scale,
       aspect_ratios=ssd_anchor_generator_config.aspect_ratios,
       reduce_boxes_in_lowest_layer=(ssd_anchor_generator_config
                                     .reduce_boxes_in_lowest_layer))
 else:
   raise ValueError('Empty anchor generator.')

接下來是構(gòu)建hyperparams_builder.build的那個模塊

def build(hyperparams_config, is_training):
#根據(jù)給出的配置文件構(gòu)建tf-slim的arg_scope托嚣,
#返回的arg_scope中包含了權(quán)重的初始化巩检,歸一化,激活函數(shù)示启,BN等信息兢哭。
#如果BN沒有定義,則不包含BN層夫嗓。
#BN的參數(shù)是否進行訓練是基于is_training參數(shù)和
#conv_hyperparams_config.batch_norm.train這兩個參數(shù)迟螺。
  if not isinstance(hyperparams_config,
                    hyperparams_pb2.Hyperparams):
    raise ValueError('hyperparams_config not of type '
                     'hyperparams_pb.Hyperparams.')
#如果有batch_norm,則進行BN啤月,
  batch_norm = None
  batch_norm_params = None
  if hyperparams_config.HasField('batch_norm'):
    batch_norm = slim.batch_norm
    batch_norm_params = _build_batch_norm_params(
        hyperparams_config.batch_norm, is_training)

  affected_ops = [slim.conv2d, slim.separable_conv2d, slim.conv2d_transpose]
  if hyperparams_config.HasField('op') and (
      hyperparams_config.op == hyperparams_pb2.Hyperparams.FC):
    affected_ops = [slim.fully_connected]
  with slim.arg_scope(
      affected_ops,
      weights_regularizer=_build_regularizer(
          hyperparams_config.regularizer),
      weights_initializer=_build_initializer(
          hyperparams_config.initializer),
      activation_fn=_build_activation_fn(hyperparams_config.activation),
      normalizer_fn=batch_norm,
      normalizer_params=batch_norm_params) as sc:
    return sc

接下來是bbox的預測的構(gòu)建

def build(argscope_fn, box_predictor_config, is_training, num_classes):
#基于配置文件進行box的預測的配置
#argscope_fn接受兩個輸入:hyperparams_pb2.Hyperparams proto以及表示是否進行訓練
  if not isinstance(box_predictor_config, box_predictor_pb2.BoxPredictor):
    raise ValueError('box_predictor_config not of type '
                     'box_predictor_pb2.BoxPredictor.')
#獲取配置文件中的box_predictor_oneof對應(yīng)的參數(shù)煮仇,這里給出的是rfcn_box_predictor
  box_predictor_oneof = box_predictor_config.WhichOneof('box_predictor_oneof')

  if  box_predictor_oneof == 'convolutional_box_predictor':
    conv_box_predictor = box_predictor_config.convolutional_box_predictor
    conv_hyperparams = argscope_fn(conv_box_predictor.conv_hyperparams,
                                   is_training)
    box_predictor_object = box_predictor.ConvolutionalBoxPredictor(
        is_training=is_training,
        num_classes=num_classes,
        conv_hyperparams=conv_hyperparams,
        min_depth=conv_box_predictor.min_depth,
        max_depth=conv_box_predictor.max_depth,
        num_layers_before_predictor=(conv_box_predictor.
                                     num_layers_before_predictor),
        use_dropout=conv_box_predictor.use_dropout,
        dropout_keep_prob=conv_box_predictor.dropout_keep_probability,
        kernel_size=conv_box_predictor.kernel_size,
        box_code_size=conv_box_predictor.box_code_size,
        apply_sigmoid_to_scores=conv_box_predictor.apply_sigmoid_to_scores)
    return box_predictor_object

  if box_predictor_oneof == 'mask_rcnn_box_predictor':
    mask_rcnn_box_predictor = box_predictor_config.mask_rcnn_box_predictor
    fc_hyperparams = argscope_fn(mask_rcnn_box_predictor.fc_hyperparams,
                                 is_training)
    conv_hyperparams = None
    if mask_rcnn_box_predictor.HasField('conv_hyperparams'):
      conv_hyperparams = argscope_fn(mask_rcnn_box_predictor.conv_hyperparams,
                                     is_training)
    box_predictor_object = box_predictor.MaskRCNNBoxPredictor(
        is_training=is_training,
        num_classes=num_classes,
        fc_hyperparams=fc_hyperparams,
        use_dropout=mask_rcnn_box_predictor.use_dropout,
        dropout_keep_prob=mask_rcnn_box_predictor.dropout_keep_probability,
        box_code_size=mask_rcnn_box_predictor.box_code_size,
        conv_hyperparams=conv_hyperparams,
        predict_instance_masks=mask_rcnn_box_predictor.predict_instance_masks,
        mask_prediction_conv_depth=(mask_rcnn_box_predictor.
                                    mask_prediction_conv_depth),
        predict_keypoints=mask_rcnn_box_predictor.predict_keypoints)
    return box_predictor_object
#如果是rfcn_box_predictor,則進行之后的操作
  if box_predictor_oneof == 'rfcn_box_predictor':
    rfcn_box_predictor = box_predictor_config.rfcn_box_predictor
#進行hyperparams_builder.build谎仲。
    conv_hyperparams = argscope_fn(rfcn_box_predictor.conv_hyperparams,
                                   is_training)
# 初始化一個box的預測器浙垫,對正樣本ROI預測類型以及位置
#用于第二階段的RFCN的結(jié)構(gòu)
    box_predictor_object = box_predictor.RfcnBoxPredictor(
        is_training=is_training,
        num_classes=num_classes,
        conv_hyperparams=conv_hyperparams,
        crop_size=[rfcn_box_predictor.crop_height,
                   rfcn_box_predictor.crop_width],
        num_spatial_bins=[rfcn_box_predictor.num_spatial_bins_height,
                          rfcn_box_predictor.num_spatial_bins_width],
        depth=rfcn_box_predictor.depth,
        box_code_size=rfcn_box_predictor.box_code_size)
    return box_predictor_object
  raise ValueError('Unknown box predictor: {}'.format(box_predictor_oneof))

上面的函數(shù)中有hyperparams_builder.build,那么就看看這個

def build(hyperparams_config, is_training):
#其實也是返回一個tf-slim 的arg_scope郑诺。
  if not isinstance(hyperparams_config,
                    hyperparams_pb2.Hyperparams):
    raise ValueError('hyperparams_config not of type '
                     'hyperparams_pb.Hyperparams.')

  batch_norm = None
  batch_norm_params = None
  if hyperparams_config.HasField('batch_norm'):
    batch_norm = slim.batch_norm
    batch_norm_params = _build_batch_norm_params(
        hyperparams_config.batch_norm, is_training)

  affected_ops = [slim.conv2d, slim.separable_conv2d, slim.conv2d_transpose]
  if hyperparams_config.HasField('op') and (
      hyperparams_config.op == hyperparams_pb2.Hyperparams.FC):
    affected_ops = [slim.fully_connected]
  with slim.arg_scope(
      affected_ops,
      weights_regularizer=_build_regularizer(
          hyperparams_config.regularizer),
      weights_initializer=_build_initializer(
          hyperparams_config.initializer),
      activation_fn=_build_activation_fn(hyperparams_config.activation),
      normalizer_fn=batch_norm,
      normalizer_params=batch_norm_params) as sc:
    return sc

已經(jīng)獲取了box以及預測的類別夹姥,之后就是要進行一些后處理,可以看看后處理的構(gòu)建post_processing_builder.build(frcnn_config.second_stage_post_processing)的具體內(nèi)容辙诞。

def build(post_processing_config):
 #構(gòu)建可調(diào)用的后處理操作辙售,主要之基于配置文件對性nms以及得分排序的操作。
  if not isinstance(post_processing_config, post_processing_pb2.PostProcessing):
    raise ValueError('post_processing_config not of type '
                     'post_processing_pb2.Postprocessing.')
#構(gòu)建nms
  non_max_suppressor_fn = _build_non_max_suppressor(
      post_processing_config.batch_non_max_suppression)
#構(gòu)建得分排序
  score_converter_fn = _build_score_converter(
      post_processing_config.score_converter)
  return non_max_suppressor_fn, score_converter_fn

nms的構(gòu)建飞涂,繼續(xù)看post_processing.batch_multiclass_non_max_suppression這個函數(shù)

def _build_non_max_suppressor(nms_config):
  if nms_config.iou_threshold < 0 or nms_config.iou_threshold > 1.0:
    raise ValueError('iou_threshold not in [0, 1.0].')
  if nms_config.max_detections_per_class > nms_config.max_total_detections:
    raise ValueError('max_detections_per_class should be no greater than '
                     'max_total_detections.')

  non_max_suppressor_fn = functools.partial(
      post_processing.batch_multiclass_non_max_suppression,
      score_thresh=nms_config.score_threshold,
      iou_thresh=nms_config.iou_threshold,
      max_size_per_class=nms_config.max_detections_per_class,
      max_total_size=nms_config.max_total_detections)
  return non_max_suppressor_fn

不用說就是post_processing.batch_multiclass_non_max_suppression

#太長了旦部,不復制了祈搜。和multiclass_non_max_suppression很相似,具體自己看

接下來是針對loss的build_hard_example_miner

def build_hard_example_miner(config,
                             classification_weight,
                             localization_weight):
#核心是 losses.HardExampleMiner士八,由于沒有使用就不看了容燕,需要的話自己看
  loss_type = None
  if config.loss_type == losses_pb2.HardExampleMiner.BOTH:
    loss_type = 'both'
  if config.loss_type == losses_pb2.HardExampleMiner.CLASSIFICATION:
    loss_type = 'cls'
  if config.loss_type == losses_pb2.HardExampleMiner.LOCALIZATION:
    loss_type = 'loc'

  max_negatives_per_positive = None
  num_hard_examples = None
  if config.max_negatives_per_positive > 0:
    max_negatives_per_positive = config.max_negatives_per_positive
  if config.num_hard_examples > 0:
    num_hard_examples = config.num_hard_examples
#只是一個初始化,具體的自己看
  hard_example_miner = losses.HardExampleMiner(
      num_hard_examples=num_hard_examples,
      iou_threshold=config.iou_threshold,
      loss_type=loss_type,
      cls_loss_weight=classification_weight,
      loc_loss_weight=localization_weight,
      max_negatives_per_positive=max_negatives_per_positive,
      min_negatives_per_image=config.min_negatives_per_image)
  return hard_example_miner

函數(shù)最后也就是最重要的rfcn_meta_arch.RFCNMetaArch婚度,其實就是RFCNMetaArch的初始化蘸秘。就是構(gòu)建一個faster r-cnn的模型之后將第二階段進行替換。

class RFCNMetaArch(faster_rcnn_meta_arch.FasterRCNNMetaArch):
  """R-FCN Meta-architecture definition."""

  def __init__(self,
               is_training,
               num_classes,
               image_resizer_fn,
               feature_extractor,
               first_stage_only,
               first_stage_anchor_generator,
               first_stage_atrous_rate,
               first_stage_box_predictor_arg_scope,
               first_stage_box_predictor_kernel_size,
               first_stage_box_predictor_depth,
               first_stage_minibatch_size,
               first_stage_positive_balance_fraction,
               first_stage_nms_score_threshold,
               first_stage_nms_iou_threshold,
               first_stage_max_proposals,
               first_stage_localization_loss_weight,
               first_stage_objectness_loss_weight,
               second_stage_rfcn_box_predictor,
               second_stage_batch_size,
               second_stage_balance_fraction,
               second_stage_non_max_suppression_fn,
               second_stage_score_conversion_fn,
               second_stage_localization_loss_weight,
               second_stage_classification_loss_weight,
               hard_example_miner,
               parallel_iterations=16):
    super(RFCNMetaArch, self).__init__(
        is_training,
        num_classes,
        image_resizer_fn,
        feature_extractor,
        first_stage_only,
        first_stage_anchor_generator,
        first_stage_atrous_rate,
        first_stage_box_predictor_arg_scope,
        first_stage_box_predictor_kernel_size,
        first_stage_box_predictor_depth,
        first_stage_minibatch_size,
        first_stage_positive_balance_fraction,
        first_stage_nms_score_threshold,
        first_stage_nms_iou_threshold,
        first_stage_max_proposals,
        first_stage_localization_loss_weight,
        first_stage_objectness_loss_weight,
        None,  # initial_crop_size is not used in R-FCN
        None,  # maxpool_kernel_size is not use in R-FCN
        None,  # maxpool_stride is not use in R-FCN
        None,  # fully_connected_box_predictor is not used in R-FCN.
        second_stage_batch_size,
        second_stage_balance_fraction,
        second_stage_non_max_suppression_fn,
        second_stage_score_conversion_fn,
        second_stage_localization_loss_weight,
        second_stage_classification_loss_weight,
        hard_example_miner,
        parallel_iterations)

    self._rfcn_box_predictor = second_stage_rfcn_box_predictor
最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末蝗茁,一起剝皮案震驚了整個濱河市醋虏,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌哮翘,老刑警劉巖颈嚼,帶你破解...
    沈念sama閱讀 217,657評論 6 505
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異忍坷,居然都是意外死亡粘舟,警方通過查閱死者的電腦和手機,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 92,889評論 3 394
  • 文/潘曉璐 我一進店門佩研,熙熙樓的掌柜王于貴愁眉苦臉地迎上來柑肴,“玉大人,你說我怎么就攤上這事旬薯∥铮” “怎么了?”我有些...
    開封第一講書人閱讀 164,057評論 0 354
  • 文/不壞的土叔 我叫張陵绊序,是天一觀的道長硕舆。 經(jīng)常有香客問我,道長骤公,這世上最難降的妖魔是什么抚官? 我笑而不...
    開封第一講書人閱讀 58,509評論 1 293
  • 正文 為了忘掉前任,我火速辦了婚禮阶捆,結(jié)果婚禮上凌节,老公的妹妹穿的比我還像新娘。我一直安慰自己洒试,他們只是感情好倍奢,可當我...
    茶點故事閱讀 67,562評論 6 392
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著垒棋,像睡著了一般卒煞。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上叼架,一...
    開封第一講書人閱讀 51,443評論 1 302
  • 那天畔裕,我揣著相機與錄音衣撬,去河邊找鬼。 笑死柴钻,一個胖子當著我的面吹牛淮韭,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播贴届,決...
    沈念sama閱讀 40,251評論 3 418
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼蜡吧!你這毒婦竟也來了毫蚓?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 39,129評論 0 276
  • 序言:老撾萬榮一對情侶失蹤昔善,失蹤者是張志新(化名)和其女友劉穎元潘,沒想到半個月后,有當?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體君仆,經(jīng)...
    沈念sama閱讀 45,561評論 1 314
  • 正文 獨居荒郊野嶺守林人離奇死亡翩概,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 37,779評論 3 335
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了返咱。 大學時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片钥庇。...
    茶點故事閱讀 39,902評論 1 348
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖咖摹,靈堂內(nèi)的尸體忽然破棺而出评姨,到底是詐尸還是另有隱情,我是刑警寧澤萤晴,帶...
    沈念sama閱讀 35,621評論 5 345
  • 正文 年R本政府宣布吐句,位于F島的核電站,受9級特大地震影響店读,放射性物質(zhì)發(fā)生泄漏嗦枢。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點故事閱讀 41,220評論 3 328
  • 文/蒙蒙 一屯断、第九天 我趴在偏房一處隱蔽的房頂上張望文虏。 院中可真熱鬧,春花似錦裹纳、人聲如沸择葡。這莊子的主人今日做“春日...
    開封第一講書人閱讀 31,838評論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽敏储。三九已至,卻和暖如春朋鞍,著一層夾襖步出監(jiān)牢的瞬間已添,已是汗流浹背妥箕。 一陣腳步聲響...
    開封第一講書人閱讀 32,971評論 1 269
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人白群。 一個月前我還...
    沈念sama閱讀 48,025評論 2 370
  • 正文 我出身青樓庸蔼,卻偏偏與公主長得像,于是被迫代替她去往敵國和親宇葱。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 44,843評論 2 354

推薦閱讀更多精彩內(nèi)容