目錄: https://github.com/dolyw/ProjectStudy/tree/master/Elasticsearch
DockerStudy
項目地址
- Github:https://github.com/dolyw/ProjectStudy/tree/master/Elasticsearch/02-SpringBoot-ES-Docker
- Gitee(碼云):https://gitee.com/dolyw/ProjectStudy/tree/master/Elasticsearch/02-SpringBoot-ES-Docker
Docker下Elasticsearch的使用
當(dāng)然首先啟動Docker,可以去Docker Hub
: https://hub.docker.com/_/elasticsearch?tab=tags查詢下Tag版本
可以先docker search elasticsearch
查詢一下吝沫,看下連接有沒有問題
然后直接使用命令docker pull elasticsearch
下載最新版本呻澜,可以加上冒號版本號下載對應(yīng)版本docker pull elasticsearch:7.3.0
,這里我們使用7.3.0版本
PS C:\> docker search elasticsearch
NAME DESCRIPTION STARS OFFICIAL AUTOMATED
elasticsearch Elasticsearch is a powerful open source sear… 3801 [OK]
nshou/elasticsearch-kibana Elasticsearch-7.1.1 Kibana-7.1.1 104 [OK]
itzg/elasticsearch Provides an easily configurable Elasticsearc… 67 [OK]
mobz/elasticsearch-head elasticsearch-head front-end and standalone … 47
elastichq/elasticsearch-hq Official Docker image for ElasticHQ: Elastic… 36 [OK]
...
PS C:\> docker pull elasticsearch:7.3.0
7.3.0: Pulling from library/elasticsearch
8ba884070f61: Pull complete
854c9f9b1064: Pull complete
44d43a907bb5: Pull complete
9311c5f24d75: Pull complete
91363c70bdb7: Pull complete
38b4cb8c47ad: Pull complete
c22bd5067efd: Pull complete
Digest: sha256:ba2ef018238cc05e9e44d72228002b4fabe202801951caaa265ce080deb97133
Status: Downloaded newer image for elasticsearch:7.3.0
docker.io/library/elasticsearch:7.3.0
PS C:\>
這樣就下載完成了惨险,先使用命令docker images
查詢Elasticsearch鏡像ID
PS C:\> docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
tomcat 8.5.43-jdk8-adoptopenjdk-openj9 689bdcef64fe 22 hours ago 339MB
elasticsearch 7.3.0 bdaab402b220 3 weeks ago 806MB
在啟動前我們先在自己主機(jī)建立ES的配置文件elasticsearch.yml和一個data空目錄
# 設(shè)置支持Elasticsearch-Head
http.cors.enabled: true
http.cors.allow-origin: "*"
# 設(shè)置集群Master配置信息
cluster.name: myEsCluster
# 節(jié)點的名字羹幸,一般為Master或者Slave
node.name: master
# 節(jié)點是否為Master,設(shè)置為true的話辫愉,說明此節(jié)點為Master節(jié)點
node.master: true
# 設(shè)置網(wǎng)絡(luò)栅受,如果是本機(jī)的話就是127.0.0.1,其他服務(wù)器配置對應(yīng)的IP地址即可(0.0.0.0支持外網(wǎng)訪問)
network.host: 0.0.0.0
# 設(shè)置對外服務(wù)的Http端口恭朗,默認(rèn)為 9200屏镊,可以修改默認(rèn)設(shè)置
http.port: 9200
# 設(shè)置節(jié)點間交互的TCP端口,默認(rèn)是9300
transport.tcp.port: 9300
# 手動指定可以成為Master的所有節(jié)點的Name或者IP痰腮,這些配置將會在第一次選舉中進(jìn)行計算
cluster.initial_master_nodes: ["master"]
然后直接用下面命令啟動Elasticsearch容器而芥,加-d就表示后臺運行,配置文件和空目錄如下對應(yīng)起來
docker run -e ES_JAVA_OPTS="-Xms256m -Xmx256m" -v D:/tools/docker/elasticsearch/elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml -v D:/tools/docker/elasticsearch/data:/usr/share/elasticsearch/data --name es -p 9200:9200 -p 9300:9300 bdaab402b220
注:設(shè)置-e ES_JAVA_OPTS="-Xms256m -Xmx256m"是因為/etc/elasticsearch/jvm.options默認(rèn)JVM最大最小內(nèi)存是2G诽嘉,讀者啟動容器后 可用docker stats
命令查看
可能會需要確認(rèn)是否共享磁盤蔚出,都確認(rèn)就可以,等一會啟動成功瀏覽器查看: http://127.0.0.1:9200虫腋,返回下面的字符,代表啟動成功
{
"name" : "master",
"cluster_name" : "myEsCluster",
"cluster_uuid" : "5SZ13bMbSKOx1Nd5iIyruA",
"version" : {
"number" : "7.3.0",
"build_flavor" : "default",
"build_type" : "docker",
"build_hash" : "de777fa",
"build_date" : "2019-07-24T18:30:11.767338Z",
"build_snapshot" : false,
"lucene_version" : "8.1.0",
"minimum_wire_compatibility_version" : "6.8.0",
"minimum_index_compatibility_version" : "6.0.0-beta1"
},
"tagline" : "You Know, for Search"
}
Docker下Elasticsearch的集群
建立三個配置文件elasticsearch1.yml稀余,elasticsearch2.yml悦冀,elasticsearch3.yml和三個data文件夾,data1睛琳,data2盒蟆,data3
- elasticsearch1.yml
# 設(shè)置支持Elasticsearch-Head
http.cors.enabled: true
http.cors.allow-origin: "*"
# 設(shè)置集群Master配置信息
cluster.name: myEsCluster
# 節(jié)點的名字踏烙,一般為Master或者Slave
node.name: master
# 節(jié)點是否為Master,設(shè)置為true的話历等,說明此節(jié)點為Master節(jié)點
node.master: true
# 設(shè)置網(wǎng)絡(luò)讨惩,如果是本機(jī)的話就是127.0.0.1,其他服務(wù)器配置對應(yīng)的IP地址即可(0.0.0.0支持外網(wǎng)訪問)
network.host: 0.0.0.0
# 設(shè)置對外服務(wù)的Http端口寒屯,默認(rèn)為 9200荐捻,可以修改默認(rèn)設(shè)置
http.port: 9500
# 設(shè)置節(jié)點間交互的TCP端口,默認(rèn)是9300
transport.tcp.port: 9300
# 手動指定可以成為Master的所有節(jié)點的Name或者IP寡夹,這些配置將會在第一次選舉中進(jìn)行計算
cluster.initial_master_nodes: ["master"]
# 集群發(fā)現(xiàn)節(jié)點信息处面,一般為其他節(jié)點IP加交互端口,這里一般填主機(jī)IP
discovery.seed_hosts: ["192.168.2.58:9301", "192.168.2.58:9302"]
- elasticsearch2.yml
# 設(shè)置集群Slave配置信息
cluster.name: myEsCluster
# 節(jié)點的名字菩掏,一般為Master或者Slave
node.name: slave1
# 節(jié)點是否為Master魂角,設(shè)置為true的話,說明此節(jié)點為master節(jié)點
node.master: false
# 設(shè)置對外服務(wù)的Http端口智绸,默認(rèn)為 9200野揪,可以修改默認(rèn)設(shè)置
http.port: 9600
# 設(shè)置節(jié)點間交互的TCP端口,默認(rèn)是9300
transport.tcp.port: 9301
# 設(shè)置網(wǎng)絡(luò)瞧栗,如果是本機(jī)的話就是127.0.0.1斯稳,其他服務(wù)器配置對應(yīng)的IP地址即可(0.0.0.0支持外網(wǎng)訪問)
network.host: 0.0.0.0
# 集群發(fā)現(xiàn)節(jié)點信息,一般為其他節(jié)點IP加交互端口沼溜,這里一般填主機(jī)IP
discovery.seed_hosts: ["192.168.2.58:9300", "192.168.2.58:9302"]
- elasticsearch3.yml
# 設(shè)置集群Slave配置信息
cluster.name: myEsCluster
# 節(jié)點的名字平挑,一般為Master或者Slave
node.name: slave2
# 節(jié)點是否為Master,設(shè)置為true的話系草,說明此節(jié)點為master節(jié)點
node.master: false
# 設(shè)置對外服務(wù)的Http端口通熄,默認(rèn)為 9200,可以修改默認(rèn)設(shè)置
http.port: 9700
# 設(shè)置節(jié)點間交互的TCP端口找都,默認(rèn)是9300
transport.tcp.port: 9302
# 設(shè)置網(wǎng)絡(luò)唇辨,如果是本機(jī)的話就是127.0.0.1,其他服務(wù)器配置對應(yīng)的IP地址即可(0.0.0.0支持外網(wǎng)訪問)
network.host: 0.0.0.0
# 集群發(fā)現(xiàn)節(jié)點信息能耻,一般為其他節(jié)點IP加交互端口赏枚,這里一般填主機(jī)IP
discovery.seed_hosts: ["192.168.2.58:9300", "192.168.2.58:9301"]
然后啟動三個,一個Master晓猛,兩個Slave
docker run -e ES_JAVA_OPTS="-Xms256m -Xmx256m" -d -v D:/tools/docker/elasticsearch/elasticsearch1.yml:/usr/share/elasticsearch/config/elasticsearch.yml -v D:/tools/docker/elasticsearch/data1:/usr/share/elasticsearch/data --name es1 -p 9500:9500 -p 9300:9300 bdaab402b220
docker run -e ES_JAVA_OPTS="-Xms256m -Xmx256m" -d -v D:/tools/docker/elasticsearch/elasticsearch2.yml:/usr/share/elasticsearch/config/elasticsearch.yml -v D:/tools/docker/elasticsearch/data2:/usr/share/elasticsearch/data --name es2 -p 9600:9600 -p 9301:9301 bdaab402b220
docker run -e ES_JAVA_OPTS="-Xms256m -Xmx256m" -d -v D:/tools/docker/elasticsearch/elasticsearch3.yml:/usr/share/elasticsearch/config/elasticsearch.yml -v D:/tools/docker/elasticsearch/data3:/usr/share/elasticsearch/data --name es3 -p 9700:9700 -p 9302:9302 bdaab402b220
等一會啟動成功瀏覽器查看集群節(jié)點信息: http://127.0.0.1:9500/_cat/nodes?v
ip heap.percent ram.percent cpu load_1m load_5m load_15m node.role master name
172.17.0.2 34 95 3 0.69 0.50 0.20 dim * master
172.17.0.4 49 95 3 0.69 0.50 0.20 di - slave1
172.17.0.3 48 95 3 0.69 0.50 0.20 di - slave1
- Docker集群就OK了
Docker下Elasticsearch-Head的安裝
可以先docker search elasticsearch
查詢一下饿幅,看下有沒有問題,然后直接使用命令docker pull mobz/elasticsearch-head:5
下載戒职,加上冒號版本號下載對應(yīng)版本栗恩,這里我們使用5版本
下載完成了,直接啟動
docker run -d --name es-head -p 9100:9100 mobz/elasticsearch-head:5
等一會啟動成功瀏覽器查看: http://127.0.0.1:9100洪燥,把連接地址改成http://localhost:9500磕秤,點擊連接即可乳乌,連接成功,可以看到三個節(jié)點的集群信息市咆,就這樣Elasticsearch-Head就安裝成功了
Docker下Elasticsearch的IK分詞插件的安裝
直接去Github的Releases下載自己ES對應(yīng)的版本: https://github.com/medcl/elasticsearch-analysis-ik/releases
下載下來放到我們對應(yīng)的每個ES映射目錄data下汉操,解壓為一個文件夾,啟動Docker蒙兰,啟動ES容器磷瘤,進(jìn)去ES容器
docker exec -it es bash
進(jìn)去data目錄,查看文件癞己,可以看到是和我們主機(jī)對應(yīng)的目錄膀斋,然后我們把解壓的這個elasticsearch-analysis-ik-7.3.0文件夾移動到上一層的plugins目錄下即可
PS C:\WINDOWS\system32> docker exec -it es bash
[root@a563ff91196d elasticsearch]# ls
LICENSE.txt NOTICE.txt README.textile bin config data jdk lib logs modules plugins
[root@a563ff91196d elasticsearch]# cd data
[root@a563ff91196d data]# ls
elasticsearch-analysis-ik-7.3.0 elasticsearch-analysis-ik-7.3.0.zip nodes
[root@a563ff91196d data]#
[root@a563ff91196d data]# ls
elasticsearch-analysis-ik-7.3.0 elasticsearch-analysis-ik-7.3.0.zip nodes
[root@a563ff91196d data]# mv elasticsearch-analysis-ik-7.3.0 ../plugins
[root@a563ff91196d data]# ls
elasticsearch-analysis-ik-7.3.0.zip nodes
[root@a563ff91196d data]# cd ..
[root@a563ff91196d elasticsearch]# ls
LICENSE.txt NOTICE.txt README.textile bin config data jdk lib logs modules plugins
[root@a563ff91196d elasticsearch]# cd plugins/
[root@a563ff91196d plugins]# ls
elasticsearch-analysis-ik-7.3.0
這樣就OK了,我們再使用命令exit退出痹雅,再docker restart es重啟容器
[root@a563ff91196d plugins]# ls
elasticsearch-analysis-ik-7.3.0
[root@a563ff91196d plugins]# exit
exit
PS C:\WINDOWS\system32> docker restart es
es
PS C:\WINDOWS\system32>
也可以docker logs -f es查看下啟動日志
測試下IK分詞插件OK了沒
POST /_analyze
{
"text":"中華人民共和國國徽",
"analyzer":"ik_smart"
}
返回
{
"tokens": [
{
"token": "中華人民共和國",
"start_offset": 0,
"end_offset": 7,
"type": "CN_WORD",
"position": 0
},
{
"token": "國徽",
"start_offset": 7,
"end_offset": 9,
"type": "CN_WORD",
"position": 1
}
]
}
Docker下Elasticsearch的拼音分詞插件的安裝
和IK安裝類似仰担,直接去Github的Releases下載自己ES對應(yīng)的版本: https://github.com/medcl/elasticsearch-analysis-pinyin/releases
操作類似,下載下來放到我們對應(yīng)的每個ES映射目錄data下绩社,解壓為一個文件夾摔蓝,啟動Docker,啟動ES容器愉耙,進(jìn)去ES容器贮尉,然后我們把解壓的這個elasticsearch-analysis-pinyin-7.3.0文件夾移動到上一層的plugins目錄下即可,這樣就OK了朴沿,我們再使用命令exit退出猜谚,再docker restart es重啟容器
然后測試一下
POST /_analyze
{
"text":"中華人民共和國國徽",
"analyzer":"pinyin"
}
返回
{
"tokens": [
{
"token": "zhong",
"start_offset": 0,
"end_offset": 0,
"type": "word",
"position": 0
},
{
"token": "zhrmghggh",
"start_offset": 0,
"end_offset": 0,
"type": "word",
"position": 0
},
{
"token": "hua",
"start_offset": 0,
"end_offset": 0,
"type": "word",
"position": 1
},
{
"token": "ren",
"start_offset": 0,
"end_offset": 0,
"type": "word",
"position": 2
},
{
"token": "min",
"start_offset": 0,
"end_offset": 0,
"type": "word",
"position": 3
},
{
"token": "gong",
"start_offset": 0,
"end_offset": 0,
"type": "word",
"position": 4
},
{
"token": "he",
"start_offset": 0,
"end_offset": 0,
"type": "word",
"position": 5
},
{
"token": "guo",
"start_offset": 0,
"end_offset": 0,
"type": "word",
"position": 6
},
{
"token": "guo",
"start_offset": 0,
"end_offset": 0,
"type": "word",
"position": 7
},
{
"token": "hui",
"start_offset": 0,
"end_offset": 0,
"type": "word",
"position": 8
}
]
}
使用IK和拼音分詞插件(詳細(xì)使用可以查看Github的文檔)
- 創(chuàng)建Index,拼音分詞過濾
PUT /book
{
"settings": {
"analysis": {
"analyzer": {
"pinyin_analyzer": {
"tokenizer": "my_pinyin"
}
},
"tokenizer": {
"my_pinyin": {
"type": "pinyin",
"keep_separate_first_letter": false,
"keep_full_pinyin": true,
"keep_original": true,
"limit_first_letter_length": 16,
"lowercase": true,
"remove_duplicated_term": true
}
}
}
}
}
返回
{
"acknowledged": true,
"shards_acknowledged": true,
"index": "book"
}
- 創(chuàng)建Mapping赌渣,屬性使用過濾魏铅,name開啟拼音分詞,content開啟IK分詞坚芜,describe開啟拼音加IK分詞
POST /book/_mapping
{
"properties": {
"name": {
"type": "keyword",
"fields": {
"pinyin": {
"type": "text",
"store": false,
"term_vector": "with_offsets",
"analyzer": "pinyin_analyzer",
"boost": 10
}
}
},
"content": {
"type": "text",
"analyzer": "ik_max_word",
"search_analyzer": "ik_smart"
},
"describe": {
"type": "text",
"analyzer": "ik_max_word",
"search_analyzer": "ik_smart",
"fields": {
"pinyin": {
"type": "text",
"store": false,
"term_vector": "with_offsets",
"analyzer": "pinyin_analyzer",
"boost": 10
}
}
},
"id": {
"type": "long"
}
}
}
返回
{
"acknowledged": true
}
這樣Index以及屬性分詞就開啟了