import keras
from keras import layers
def U_netModel(num_classes,input_shape=(512,512,1)):
inputs = layers.Input(shape=input_shape)
conv1_1 = layers.Conv2D(filters=64,kernel_size=(3,3),padding="same",kernel_initializer="he_normal",activation="relu")(inputs)
conv1_2 = layers.Conv2D(filters=64,kernel_size=(3,3),padding="same",kernel_initializer="he_normal",activation="relu")(conv1_1)
pool1 = layers.MaxPooling2D(pool_size=(2,2))(conv1_2)
conv2_1 = layers.Conv2D(filters=128, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(pool1)
conv2_2 = layers.Conv2D(filters=128, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(conv2_1)
pool2 = layers.MaxPooling2D(pool_size=(2,2))(conv2_2)
conv3_1 = layers.Conv2D(filters=256, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(pool2)
conv3_2 = layers.Conv2D(filters=256, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(conv3_1)
pool3 = layers.MaxPooling2D(pool_size=(2,2))(conv3_2)
conv4_1 = layers.Conv2D(filters=512, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(pool3)
conv4_2 = layers.Conv2D(filters=512, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(conv4_1)
pool4 = layers.MaxPooling2D(pool_size=(2, 2))(conv4_2)
conv5_1 = layers.Conv2D(filters=1024, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(pool4)
conv5_2 = layers.Conv2D(filters=1024, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(conv5_1)
deconv6_up = layers.Conv2D(filters=512,kernel_size=(3,3),padding="same",kernel_initializer="he_normal",activation="relu")(layers.UpSampling2D((2,2))(conv5_2))
merge6 = layers.concatenate([conv4_2,deconv6_up])
deconv6_1 = layers.Conv2D(filters=512,kernel_size=(3,3),padding="same",kernel_initializer="he_normal",activation="relu")(merge6)
deconv6_2 = layers.Conv2D(filters=512,kernel_size=(3,3),padding="same",kernel_initializer="he_normal",activation="relu")(deconv6_1)
deconv7_up = layers.Conv2D(filters=256,kernel_size=(3,3),padding="same",kernel_initializer="he_normal",activation="relu")(layers.UpSampling2D((2,2))(deconv6_2))
merge7 = layers.concatenate([conv3_2,deconv7_up])
deconv7_1 = layers.Conv2D(filters=256,kernel_size=(3,3),padding="same",kernel_initializer="he_normal",activation="relu")(merge7)
deconv7_2 = layers.Conv2D(filters=256,kernel_size=(3,3),padding="same",kernel_initializer="he_normal",activation="relu")(deconv7_1)
deconv8_up = layers.Conv2D(filters=128, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(layers.UpSampling2D((2, 2))(deconv7_2))
merge8 = layers.concatenate([conv2_2, deconv8_up])
deconv8_1 = layers.Conv2D(filters=128, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal", activation="relu")(merge8)
deconv8_2 = layers.Conv2D(filters=128, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(deconv8_1)
deconv9_up = layers.Conv2D(filters=64, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(layers.UpSampling2D((2, 2))(deconv8_2))
merge9 = layers.concatenate([conv1_2, deconv9_up])
deconv9_1 = layers.Conv2D(filters=64, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(merge9)
deconv9_2 = layers.Conv2D(filters=64, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(deconv9_1)
###########num_classes的值根據(jù)有多少類別決定
###########激活函數(shù)sigmoid顺献,因?yàn)閘abels是用one_hot編碼
outputs = layers.Conv2D(filters=num_classes, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="sigmoid")(deconv9_2)
model = keras.models.Model(inputs=inputs,outputs=outputs)
return model
model = U_netModel(2)
print(model.summary())
Keras實(shí)現(xiàn)U-Net網(wǎng)絡(luò)結(jié)構(gòu)
最后編輯于 :
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
- 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來封寞,“玉大人然评,你說我怎么就攤上這事”肪浚” “怎么了碗淌?”我有些...
- 文/不壞的土叔 我叫張陵,是天一觀的道長(zhǎng)抖锥。 經(jīng)常有香客問我亿眠,道長(zhǎng),這世上最難降的妖魔是什么磅废? 我笑而不...
- 正文 為了忘掉前任纳像,我火速辦了婚禮,結(jié)果婚禮上还蹲,老公的妹妹穿的比我還像新娘爹耗。我一直安慰自己,他們只是感情好谜喊,可當(dāng)我...
- 文/花漫 我一把揭開白布潭兽。 她就那樣靜靜地躺著,像睡著了一般斗遏。 火紅的嫁衣襯著肌膚如雪山卦。 梳的紋絲不亂的頭發(fā)上,一...
- 文/蒼蘭香墨 我猛地睜開眼箱玷,長(zhǎng)吁一口氣:“原來是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來了陌宿?” 一聲冷哼從身側(cè)響起锡足,我...
- 序言:老撾萬榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎壳坪,沒想到半個(gè)月后舶得,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
- 正文 獨(dú)居荒郊野嶺守林人離奇死亡爽蝴,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
- 正文 我和宋清朗相戀三年沐批,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了纫骑。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
- 正文 年R本政府宣布,位于F島的核電站顾患,受9級(jí)特大地震影響番捂,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜江解,卻給世界環(huán)境...
- 文/蒙蒙 一设预、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧犁河,春花似錦鳖枕、人聲如沸。這莊子的主人今日做“春日...
- 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至灭翔,卻和暖如春魏烫,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背肝箱。 一陣腳步聲響...
- 正文 我出身青樓呐赡,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國(guó)和親骏融。 傳聞我的和親對(duì)象是個(gè)殘疾皇子罚舱,可洞房花燭夜當(dāng)晚...
推薦閱讀更多精彩內(nèi)容
- 原文鏈接https://blog.csdn.net/qq_33037903/article/details/887...
- 背景簡(jiǎn)介 在 LeNet 問世后的第4年窃肠,2012年, AlexNet 在 ImageNet LSVRC-2010...
- 背景簡(jiǎn)介 要深入理解卷積神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)碧囊,我們需要追根溯源,只有這樣才能更好的理解 CNN 網(wǎng)絡(luò)纤怒。 1998年 Le...
- 十天的學(xué)習(xí)彈指一揮間∨炊現(xiàn)在再來回顧整理,我為什么加入定位模塊學(xué)習(xí)泊窘?這些天收獲有哪些熄驼?之后如何去行動(dòng)呢? 一烘豹、定位的...
- 傍晚 我坐在海邊的堤上 海風(fēng)吹著我的頭發(fā)和襯衫 鉆進(jìn)我鼻子里的魚腥并不濃烈 偶爾有一兩個(gè)人從我身后走過 拉著家常 ...