Keras實(shí)現(xiàn)U-Net網(wǎng)絡(luò)結(jié)構(gòu)

import keras
from keras import layers


def U_netModel(num_classes,input_shape=(512,512,1)):
    inputs = layers.Input(shape=input_shape)
    conv1_1 = layers.Conv2D(filters=64,kernel_size=(3,3),padding="same",kernel_initializer="he_normal",activation="relu")(inputs)
    conv1_2 = layers.Conv2D(filters=64,kernel_size=(3,3),padding="same",kernel_initializer="he_normal",activation="relu")(conv1_1)
    pool1 = layers.MaxPooling2D(pool_size=(2,2))(conv1_2)

    conv2_1 = layers.Conv2D(filters=128, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(pool1)
    conv2_2 = layers.Conv2D(filters=128, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(conv2_1)
    pool2 = layers.MaxPooling2D(pool_size=(2,2))(conv2_2)

    conv3_1 = layers.Conv2D(filters=256, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(pool2)
    conv3_2 = layers.Conv2D(filters=256, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(conv3_1)
    pool3 = layers.MaxPooling2D(pool_size=(2,2))(conv3_2)

    conv4_1 = layers.Conv2D(filters=512, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(pool3)
    conv4_2 = layers.Conv2D(filters=512, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(conv4_1)
    pool4 = layers.MaxPooling2D(pool_size=(2, 2))(conv4_2)

    conv5_1 = layers.Conv2D(filters=1024, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(pool4)
    conv5_2 = layers.Conv2D(filters=1024, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(conv5_1)

    deconv6_up = layers.Conv2D(filters=512,kernel_size=(3,3),padding="same",kernel_initializer="he_normal",activation="relu")(layers.UpSampling2D((2,2))(conv5_2))
    merge6 = layers.concatenate([conv4_2,deconv6_up])
    deconv6_1 = layers.Conv2D(filters=512,kernel_size=(3,3),padding="same",kernel_initializer="he_normal",activation="relu")(merge6)
    deconv6_2 = layers.Conv2D(filters=512,kernel_size=(3,3),padding="same",kernel_initializer="he_normal",activation="relu")(deconv6_1)

    deconv7_up = layers.Conv2D(filters=256,kernel_size=(3,3),padding="same",kernel_initializer="he_normal",activation="relu")(layers.UpSampling2D((2,2))(deconv6_2))
    merge7 = layers.concatenate([conv3_2,deconv7_up])
    deconv7_1 = layers.Conv2D(filters=256,kernel_size=(3,3),padding="same",kernel_initializer="he_normal",activation="relu")(merge7)
    deconv7_2 = layers.Conv2D(filters=256,kernel_size=(3,3),padding="same",kernel_initializer="he_normal",activation="relu")(deconv7_1)

    deconv8_up = layers.Conv2D(filters=128, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(layers.UpSampling2D((2, 2))(deconv7_2))
    merge8 = layers.concatenate([conv2_2, deconv8_up])
    deconv8_1 = layers.Conv2D(filters=128, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal", activation="relu")(merge8)
    deconv8_2 = layers.Conv2D(filters=128, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(deconv8_1)

    deconv9_up = layers.Conv2D(filters=64, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(layers.UpSampling2D((2, 2))(deconv8_2))
    merge9 = layers.concatenate([conv1_2, deconv9_up])
    deconv9_1 = layers.Conv2D(filters=64, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(merge9)
    deconv9_2 = layers.Conv2D(filters=64, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="relu")(deconv9_1)
    ###########num_classes的值根據(jù)有多少類別決定
    ###########激活函數(shù)sigmoid顺献,因?yàn)閘abels是用one_hot編碼
    outputs = layers.Conv2D(filters=num_classes, kernel_size=(3, 3), padding="same", kernel_initializer="he_normal",activation="sigmoid")(deconv9_2)

    model = keras.models.Model(inputs=inputs,outputs=outputs)

    return model

model = U_netModel(2)
print(model.summary())
最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末铐然,一起剝皮案震驚了整個(gè)濱河市陆馁,隨后出現(xiàn)的幾起案子源哩,更是在濱河造成了極大的恐慌徒扶,老刑警劉巖绎晃,帶你破解...
    沈念sama閱讀 219,539評(píng)論 6 508
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件赁豆,死亡現(xiàn)場(chǎng)離奇詭異波附,居然都是意外死亡艺晴,警方通過查閱死者的電腦和手機(jī)昼钻,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 93,594評(píng)論 3 396
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來封寞,“玉大人然评,你說我怎么就攤上這事”肪浚” “怎么了碗淌?”我有些...
    開封第一講書人閱讀 165,871評(píng)論 0 356
  • 文/不壞的土叔 我叫張陵,是天一觀的道長(zhǎng)抖锥。 經(jīng)常有香客問我亿眠,道長(zhǎng),這世上最難降的妖魔是什么磅废? 我笑而不...
    開封第一講書人閱讀 58,963評(píng)論 1 295
  • 正文 為了忘掉前任纳像,我火速辦了婚禮,結(jié)果婚禮上还蹲,老公的妹妹穿的比我還像新娘爹耗。我一直安慰自己,他們只是感情好谜喊,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,984評(píng)論 6 393
  • 文/花漫 我一把揭開白布潭兽。 她就那樣靜靜地躺著,像睡著了一般斗遏。 火紅的嫁衣襯著肌膚如雪山卦。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 51,763評(píng)論 1 307
  • 那天诵次,我揣著相機(jī)與錄音账蓉,去河邊找鬼。 笑死逾一,一個(gè)胖子當(dāng)著我的面吹牛铸本,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播遵堵,決...
    沈念sama閱讀 40,468評(píng)論 3 420
  • 文/蒼蘭香墨 我猛地睜開眼箱玷,長(zhǎng)吁一口氣:“原來是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來了陌宿?” 一聲冷哼從身側(cè)響起锡足,我...
    開封第一講書人閱讀 39,357評(píng)論 0 276
  • 序言:老撾萬榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎壳坪,沒想到半個(gè)月后舶得,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 45,850評(píng)論 1 317
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡爽蝴,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 38,002評(píng)論 3 338
  • 正文 我和宋清朗相戀三年沐批,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了纫骑。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 40,144評(píng)論 1 351
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡珠插,死狀恐怖惧磺,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情捻撑,我是刑警寧澤磨隘,帶...
    沈念sama閱讀 35,823評(píng)論 5 346
  • 正文 年R本政府宣布,位于F島的核電站顾患,受9級(jí)特大地震影響番捂,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜江解,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,483評(píng)論 3 331
  • 文/蒙蒙 一设预、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧犁河,春花似錦鳖枕、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 32,026評(píng)論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至灭翔,卻和暖如春魏烫,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背肝箱。 一陣腳步聲響...
    開封第一講書人閱讀 33,150評(píng)論 1 272
  • 我被黑心中介騙來泰國(guó)打工哄褒, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人煌张。 一個(gè)月前我還...
    沈念sama閱讀 48,415評(píng)論 3 373
  • 正文 我出身青樓呐赡,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國(guó)和親骏融。 傳聞我的和親對(duì)象是個(gè)殘疾皇子罚舱,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 45,092評(píng)論 2 355

推薦閱讀更多精彩內(nèi)容