《大數(shù)據(jù)時(shí)代》筆記No.1:這個(gè)時(shí)代到底哪里變了?

在人類的絕大多數(shù)研究機(jī)構(gòu)中叉庐,我們過(guò)去往往假設(shè)舒帮,所獲的信息都是小的、精確的陡叠、可以推測(cè)因果的玩郊。但是世界變了,因?yàn)閿?shù)據(jù)變得巨大枉阵、處理飛快和非精確译红。雪上加霜的是,這些數(shù)據(jù)基本都由機(jī)器處理和作出預(yù)測(cè)兴溜。

千禧一代大都接受這樣的改變侦厚。過(guò)去的執(zhí)政者曾經(jīng)擔(dān)心過(guò)科技會(huì)暴露過(guò)多隱私,所以建設(shè)了一套管理機(jī)制(事實(shí)上互聯(lián)網(wǎng)的早期設(shè)計(jì)者的確“不太尊重”傳統(tǒng)的隱私和知識(shí)產(chǎn)權(quán))拙徽。作者聲稱人們是愿意分享在線上分享個(gè)人信息的刨沦,他說(shuō)這是一個(gè)“數(shù)據(jù)”的服務(wù)特性。

與此同時(shí)膘怕,數(shù)據(jù)分析的危險(xiǎn)性從隱私權(quán)轉(zhuǎn)移到了“非確定性”(原文probability):算法會(huì)預(yù)測(cè)一個(gè)可能性——你得心臟病的可能性想诅,被給予貸款的可能性,甚至是犯罪的可能性淳蔼。這導(dǎo)致了一個(gè)“倫理”性的問(wèn)題關(guān)于人的直覺(jué)和數(shù)據(jù)的預(yù)測(cè)侧蘸,如果人所認(rèn)為的數(shù)據(jù)所說(shuō)的相左該怎么辦?

In many ways, the way we control and handle data will have to change. We're entering a world of constant datapdriven predictions where we may not be able to explain the reasons behind our decisions. What does it mean if a doctor cannot justify a medical intervention without asking the patient to defer to a black box, as the physician must do when relying on a big-data-driven diagnosis? Will the judicial system's standard of "probable cause" need to change to "probabilistic cause" - and if so, what are the implications of this for human freedom and dignity?

New principles are needed for the age of big data, which we lay out in Ch.9. Although they build upon the values that were developed and enshrined for the world of small data, it's not simply a matter of refreshing old rules for new circumstances, but recognizing the need for new principles altogether.

The benefits to society will be myriad, as big data becomes part of the solution to pressing global problems like addressing climate change, eradicating disease, and fostering good governance and economic development. But the big-data era also challenges us to become better prepared for the ways in which harnessing the technology will change our institutions and ourselves.

Big data marks an import step in humankind's quest to quantify and understand the world. A preponderance of things that could never be measured, stored, analyzed, and shred before is becoming datafied. Harnessing vast quantities of data rather than small portion, and privileging more data of less exactitude, opens the door to new ways of understanding. It leads society to abandon its time-honored preference for causality, and in many instances tap the benefits of correlation.

The ideal of identifying causal mechanisms is a selfp-congratulatoryillusion; big data overturns this. Yet again we are at a historical impasse where "god is dead". That is to say, the certainties that we believed in are once again changing. But this time they are being replaced, ironically, by better evidence. What role is left for intuition, faith, uncertainty, acting in contradiction of the evidence, and learning by experience? As the world shifts from causation to correlation, how can we pragmatically move forward without undermining the very foundations to explain where we are, trace how we got here, and offer an urgently needed guide to the benefits and dangers that lie ahead.

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末鹉梨,一起剝皮案震驚了整個(gè)濱河市讳癌,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌存皂,老刑警劉巖晌坤,帶你破解...
    沈念sama閱讀 212,080評(píng)論 6 493
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場(chǎng)離奇詭異旦袋,居然都是意外死亡骤菠,警方通過(guò)查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 90,422評(píng)論 3 385
  • 文/潘曉璐 我一進(jìn)店門疤孕,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái)商乎,“玉大人,你說(shuō)我怎么就攤上這事祭阀○钠荩” “怎么了鲜戒?”我有些...
    開封第一講書人閱讀 157,630評(píng)論 0 348
  • 文/不壞的土叔 我叫張陵,是天一觀的道長(zhǎng)抹凳。 經(jīng)常有香客問(wèn)我遏餐,道長(zhǎng),這世上最難降的妖魔是什么赢底? 我笑而不...
    開封第一講書人閱讀 56,554評(píng)論 1 284
  • 正文 為了忘掉前任失都,我火速辦了婚禮,結(jié)果婚禮上幸冻,老公的妹妹穿的比我還像新娘粹庞。我一直安慰自己,他們只是感情好嘁扼,可當(dāng)我...
    茶點(diǎn)故事閱讀 65,662評(píng)論 6 386
  • 文/花漫 我一把揭開白布信粮。 她就那樣靜靜地躺著,像睡著了一般趁啸。 火紅的嫁衣襯著肌膚如雪强缘。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 49,856評(píng)論 1 290
  • 那天不傅,我揣著相機(jī)與錄音旅掂,去河邊找鬼。 笑死访娶,一個(gè)胖子當(dāng)著我的面吹牛商虐,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播崖疤,決...
    沈念sama閱讀 39,014評(píng)論 3 408
  • 文/蒼蘭香墨 我猛地睜開眼秘车,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來(lái)了劫哼?” 一聲冷哼從身側(cè)響起叮趴,我...
    開封第一講書人閱讀 37,752評(píng)論 0 268
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎权烧,沒(méi)想到半個(gè)月后眯亦,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 44,212評(píng)論 1 303
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡般码,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 36,541評(píng)論 2 327
  • 正文 我和宋清朗相戀三年妻率,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片板祝。...
    茶點(diǎn)故事閱讀 38,687評(píng)論 1 341
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡宫静,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情囊嘉,我是刑警寧澤温技,帶...
    沈念sama閱讀 34,347評(píng)論 4 331
  • 正文 年R本政府宣布,位于F島的核電站扭粱,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏震檩。R本人自食惡果不足惜琢蛤,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 39,973評(píng)論 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望抛虏。 院中可真熱鬧博其,春花似錦、人聲如沸迂猴。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,777評(píng)論 0 21
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)沸毁。三九已至峰髓,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間息尺,已是汗流浹背携兵。 一陣腳步聲響...
    開封第一講書人閱讀 32,006評(píng)論 1 266
  • 我被黑心中介騙來(lái)泰國(guó)打工, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留搂誉,地道東北人徐紧。 一個(gè)月前我還...
    沈念sama閱讀 46,406評(píng)論 2 360
  • 正文 我出身青樓,卻偏偏與公主長(zhǎng)得像炭懊,于是被迫代替她去往敵國(guó)和親并级。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 43,576評(píng)論 2 349

推薦閱讀更多精彩內(nèi)容