numpy數(shù)據(jù)分析練習(xí)

  1. 查看版本

import numpy as np

print(np.__version__)

  1. 創(chuàng)建一維數(shù)組

arr = np.arange(10)

3.創(chuàng)建一個(gè)布爾數(shù)組


np.full((3, 3), True, dtype=bool)

np.ones((3,3), dtype=bool)

4.從一維數(shù)組中提取滿足指定條件的元素毫缆?


arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

arr[arr % 2 == 1]

5.用numpy數(shù)組中的另一個(gè)值替換滿足條件的元素項(xiàng)?


arr[arr % 2 == 1] = -1

6.在不影響原始數(shù)組的情況下替換滿足條件的元素項(xiàng)兵睛?


arr = np.arange(10)

out = np.where(arr % 2 == 1, -1, arr)

7.改變數(shù)組的形狀?


arr = np.arange(10)

arr.reshape(2, -1)  # Setting to -1 automatically decides the number of cols

  1. 垂直疊加兩個(gè)數(shù)組?

a = np.arange(10).reshape(2,-1)

b = np.repeat(1, 10).reshape(2,-1)

# Answers# Method 1:

np.concatenate([a, b], axis=0)

# Method 2:

np.vstack([a, b])

# Method 3:

np.r_[a, b]

  1. 水平疊加兩個(gè)數(shù)組祖很?

a = np.arange(10).reshape(2,-1)

b = np.repeat(1, 10).reshape(2,-1)

# Answers# Method 1:

np.concatenate([a, b], axis=1)

# Method 2:

np.hstack([a, b])

# Method 3:

np.c_[a, b]

  1. 在無硬編碼的情況下生成numpy中的自定義序列笛丙?

a = np.array([1,2,3])

np.r_[np.repeat(a, 3), np.tile(a, 3)]

  1. 獲取兩個(gè)numpy數(shù)組之間的公共項(xiàng)?

a = np.array([1,2,3,2,3,4,3,4,5,6])

b = np.array([7,2,10,2,7,4,9,4,9,8])

np.intersect1d(a,b)

  1. 從一個(gè)數(shù)組中刪除存在于另一個(gè)數(shù)組中的項(xiàng)假颇?

a = np.array([1,2,3,4,5])

b = np.array([5,6,7,8,9])

# From 'a' remove all of 'b'

np.setdiff1d(a,b)

13.得到兩個(gè)數(shù)組元素匹配的位置胚鸯?


a = np.array([1,2,3,2,3,4,3,4,5,6])

b = np.array([7,2,10,2,7,4,9,4,9,8])

np.where(a == b)

14.從numpy數(shù)組中提取給定范圍內(nèi)的所有數(shù)字?


a = np.arange(15)

# Method 1

index = np.where((a >= 5) & (a <= 10))

a[index]

# Method 2:

index = np.where(np.logical_and(a>=5, a<=10))

a[index]# > (array([6, 9, 10]),)

# Method 3: (thanks loganzk!)

a[(a >= 5) & (a <= 10)]

15.創(chuàng)建一個(gè)python函數(shù)來處理scalars并在numpy數(shù)組上工作笨鸡?


def maxx(x, y):

    """Get the maximum of two items"""

    if x >= y:

        return x

    else:

        return y

pair_max = np.vectorize(maxx, otypes=[float])

a = np.array([5, 7, 9, 8, 6, 4, 5])

b = np.array([6, 3, 4, 8, 9, 7, 1])

pair_max(a, b)

16.交換二維numpy數(shù)組中的兩列姜钳?


# Input

arr = np.arange(9).reshape(3,3)

arr

# Solution

arr[:, [1,0,2]]

17.交換二維numpy數(shù)組中的兩行?


arr = np.arange(9).reshape(3,3)

# Solution

arr[[1,0,2], :]

18.反轉(zhuǎn)二維數(shù)組的行形耗?


# Input

arr = np.arange(9).reshape(3,3)

arr[::-1]

array([[6, 7, 8],

      [3, 4, 5],

      [0, 1, 2]])

19.反轉(zhuǎn)二維數(shù)組的列哥桥?


arr = np.arange(9).reshape(3,3)

# Solution

arr[:, ::-1]

20.創(chuàng)建包含5到10之間隨機(jī)浮動(dòng)的二維數(shù)組?


# Input

arr = np.arange(9).reshape(3,3)

# Solution Method 1:

rand_arr = np.random.randint(low=5, high=10, size=(5,3)) + np.random.random((5,3))

# print(rand_arr)

# Solution Method 2:

rand_arr = np.random.uniform(5,10, size=(5,3))

print(rand_arr)

21.在numpy數(shù)組中只打印小數(shù)點(diǎn)后三位激涤?


# Input

rand_arr = np.random.random((5,3))

# Create the random array

rand_arr = np.random.random([5,3])

# Limit to 3 decimal places

np.set_printoptions(precision=3)

rand_arr[:4]

  1. 通過e式科學(xué)記數(shù)法(如1e10)來打印一個(gè)numpy數(shù)組拟糕?

# Reset printoptions to default

np.set_printoptions(suppress=False)

# Create the random array

np.random.seed(100)

rand_arr = np.random.random([3,3])/1e3

rand_arr

np.set_printoptions(suppress=True, precision=6)  # precision is ptional

rand_arr

23.限制numpy數(shù)組輸出中打印的項(xiàng)目數(shù)?


np.set_printoptions(threshold=6)

a = np.arange(15)

24.打印完整的numpy數(shù)組而不截?cái)?/p>


# Input

np.set_printoptions(threshold=6)

a = np.arange(15)

# Solution

np.set_printoptions(threshold=np.nan)

a  # 有報(bào)錯(cuò)

25.導(dǎo)入數(shù)字和文本的數(shù)據(jù)集保持文本在numpy數(shù)組中完好無損倦踢?


# Solution

url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'

iris = np.genfromtxt(url, delimiter=',', dtype='object')

names = ('sepallength', 'sepalwidth', 'petallength', 'petalwidth', 'species')

# Print the first 3 rows

iris[:3]

  1. 從1維元組數(shù)組中提取特定列送滞?

# **給定:**

url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'

iris_1d = np.genfromtxt(url, delimiter=',', dtype=None)print(iris_1d.shape)

# Solution:

species = np.array([row[4] for row in iris_1d])

species[:5]

27.將1維元組數(shù)組轉(zhuǎn)換為2維numpy數(shù)組?


# **給定:**

url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'

iris_1d = np.genfromtxt(url, delimiter=',', dtype=None)

# Solution:# Method 1: Convert each row to a list and get the first 4 items

iris_2d = np.array([row.tolist()[:4] for row in iris_1d])

iris_2d[:4]

# Alt Method 2: Import only the first 4 columns from source url

iris_2d = np.genfromtxt(url, delimiter=',', dtype='float', usecols=[0,1,2,3])

iris_2d[:4]

28.計(jì)算numpy數(shù)組的均值辱挥,中位數(shù)犁嗅,標(biāo)準(zhǔn)差?


# Input

url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'

iris = np.genfromtxt(url, delimiter=',', dtype='object')

sepallength = np.genfromtxt(url, delimiter=',', dtype='float', usecols=[0])

# Solution

mu, med, sd = np.mean(sepallength), np.median(sepallength), np.std(sepallength)print(mu, med, sd)

29.規(guī)范化數(shù)組般贼,使數(shù)組的值正好介于0和1之間愧哟?


url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'

sepallength = np.genfromtxt(url, delimiter=',', dtype='float', usecols=[0])

# Solution

Smax, Smin = sepallength.max(), sepallength.min()

S = (sepallength - Smin)/(Smax - Smin)# or

S = (sepallength - Smin)/sepallength.ptp()  # Thanks, David jeda!

print(S)

31.找到numpy數(shù)組的百分位數(shù)?


# Input

url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'

sepallength = np.genfromtxt(url, delimiter=',', dtype='float', usecols=[0])

# Solution

np.percentile(sepallength, q=[5, 95])

32.在數(shù)組中的隨機(jī)位置插入值哼蛆?


# Input

url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'

iris_2d = np.genfromtxt(url, delimiter=',', dtype='object')

# Method 1

i, j = np.where(iris_2d)

# i, j contain the row numbers and column numbers of 600 elements of iris_x

np.random.seed(100)

iris_2d[np.random.choice((i), 20), np.random.choice((j), 20)] = np.nan

# Method 2

np.random.seed(100)

iris_2d[np.random.randint(150, size=20), np.random.randint(4, size=20)] = np.nan

# Print first 10 rows

print(iris_2d[:10])

33.在numpy數(shù)組中找到缺失值的位置蕊梧?


# Input

url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'

iris_2d = np.genfromtxt(url, delimiter=',', dtype='float', usecols=[0,1,2,3])

iris_2d[np.random.randint(150, size=20), np.random.randint(4, size=20)] = np.nan

# Solution

print("Number of missing values: \n", np.isnan(iris_2d[:, 0]).sum())print("Position of missing values: \n", np.where(np.isnan(iris_2d[:, 0])))

34.根據(jù)兩個(gè)或多個(gè)條件過濾numpy數(shù)組?


# Input

url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'

iris_2d = np.genfromtxt(url, delimiter=',', dtype='float', usecols=[0,1,2,3])

# Solution

condition = (iris_2d[:, 2] > 1.5) & (iris_2d[:, 0] < 5.0)

iris_2d[condition]

35.從numpy數(shù)組中刪除包含缺失值的行腮介?


# Input

url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'

iris_2d = np.genfromtxt(url, delimiter=',', dtype='float', usecols=[0,1,2,3])

iris_2d[np.random.randint(150, size=20), np.random.randint(4, size=20)] = np.nan

# Solution# No direct numpy function for this.# Method 1:

any_nan_in_row = np.array([~np.any(np.isnan(row)) for row in iris_2d])

iris_2d[any_nan_in_row][:5]

# Method 2: (By Rong)

iris_2d[np.sum(np.isnan(iris_2d), axis = 1) == 0][:5]

36.找到numpy數(shù)組的兩列之間的相關(guān)性肥矢?


# Input

url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'

iris = np.genfromtxt(url, delimiter=',', dtype='float', usecols=[0,1,2,3])

# Solution 1

np.corrcoef(iris[:, 0], iris[:, 2])[0, 1]

# Solution 2

from scipy.stats.stats import pearsonr 

corr, p_value = pearsonr(iris[:, 0], iris[:, 2])

print(corr)

37.查找給定數(shù)組是否具有任何空值?


url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'

iris_2d = np.genfromtxt(url, delimiter=',', dtype='float', usecols=[0,1,2,3])

np.isnan(iris_2d).any()

38.在numpy數(shù)組中用0替換所有缺失值叠洗?


# Input

url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'

iris_2d = np.genfromtxt(url, delimiter=',', dtype='float', usecols=[0,1,2,3])

iris_2d[np.random.randint(150, size=20), np.random.randint(4, size=20)] = np.nan

# Solution

iris_2d[np.isnan(iris_2d)] = 0

iris_2d[:4]

39.在numpy數(shù)組中查找唯一值的計(jì)數(shù)甘改?


# Import iris keeping the text column intact

url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'

iris = np.genfromtxt(url, delimiter=',', dtype='object')

names = ('sepallength', 'sepalwidth', 'petallength', 'petalwidth', 'species')

# Solution# Extract the species column as an array

species = np.array([row.tolist()[4] for row in iris])

# Get the unique values and the counts

np.unique(species, return_counts=True)

40.將數(shù)字轉(zhuǎn)換為分類(文本)數(shù)組?


# Input

url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'

iris = np.genfromtxt(url, delimiter=',', dtype='object')

names = ('sepallength', 'sepalwidth', 'petallength', 'petalwidth', 'species')

# Bin petallength

petal_length_bin = np.digitize(iris[:, 2].astype('float'), [0, 3, 5, 10])

# Map it to respective category

label_map = {1: 'small', 2: 'medium', 3: 'large', 4: np.nan}

petal_length_cat = [label_map[x] for x in petal_length_bin]

# View

petal_length_cat[:4]

41.從numpy數(shù)組的現(xiàn)有列創(chuàng)建新列灭抑?


# Input

url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'

iris_2d = np.genfromtxt(url, delimiter=',', dtype='object')

# Solution# Compute volume

sepallength = iris_2d[:, 0].astype('float')

petallength = iris_2d[:, 2].astype('float')

volume = (np.pi * petallength * (sepallength**2))/3

# Introduce new dimension to match iris_2d's

volume = volume[:, np.newaxis]

# Add the new column

out = np.hstack([iris_2d, volume])

# View

out[:4]

42.在numpy中進(jìn)行概率抽樣十艾?


# Import iris keeping the text column intact

url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'

iris = np.genfromtxt(url, delimiter=',', dtype='object')

# Solution# Get the species column

species = iris[:, 4]

# Approach 1: Generate Probablistically

np.random.seed(100)

a = np.array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'])

species_out = np.random.choice(a, 150, p=[0.5, 0.25, 0.25])

# Approach 2: Probablistic Sampling (preferred)

np.random.seed(100)

probs = np.r_[np.linspace(0, 0.500, num=50), np.linspace(0.501, .750, num=50), np.linspace(.751, 1.0, num=50)]

index = np.searchsorted(probs, np.random.random(150))

species_out = species[index]

print(np.unique(species_out, return_counts=True))

方法2是首選方法,因?yàn)樗鼊?chuàng)建了一個(gè)索引變量腾节,該變量可用于取樣2維表格數(shù)據(jù)忘嫉。

43.按另一個(gè)數(shù)組分組時(shí)獲取數(shù)組的第二大值荤牍?


# Import iris keeping the text column intact

url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'

iris = np.genfromtxt(url, delimiter=',', dtype='object')

# Solution# Get the species and petal length columns

petal_len_setosa = iris[iris[:, 4] == b'Iris-setosa', [2]].astype('float')

# Get the second last value

np.unique(np.sort(petal_len_setosa))[-2]

44.按列對(duì)2D數(shù)組進(jìn)行排序


url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'

iris = np.genfromtxt(url, delimiter=',', dtype='object')

names = ('sepallength', 'sepalwidth', 'petallength', 'petalwidth', 'species')

# Sort by column position 0: SepalLength

print(iris[iris[:,0].argsort()][:20])

45.在numpy數(shù)組中找到最常見的值?


# **給定:**

url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'

iris = np.genfromtxt(url, delimiter=',', dtype='object')

# Solution:

vals, counts = np.unique(iris[:, 2], return_counts=True)print(vals[np.argmax(counts)])

46.找到第一次出現(xiàn)的值大于給定值的位置庆冕?


# **給定:**

url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'

iris = np.genfromtxt(url, delimiter=',', dtype='object')

# Solution: (edit: changed argmax to argwhere. Thanks Rong!)

np.argwhere(iris[:, 3].astype(float) > 1.0)[0]

47.將大于給定值的所有值替換為給定的截止值康吵?


# Input

np.set_printoptions(precision=2)

np.random.seed(100)

a = np.random.uniform(1,50, 20)

# Solution 1: Using np.clip

np.clip(a, a_min=10, a_max=30)

# Solution 2: Using np.where

print(np.where(a < 10, 10, np.where(a > 30, 30, a)))

48.從numpy數(shù)組中獲取最大n值的位置?


# Input

np.random.seed(100)

a = np.random.uniform(1,50, 20)

# Solution:

print(a.argsort())# > [18 7 3 10 15]

# Solution 2:

np.argpartition(-a, 5)[:5]# > [15 10  3  7 18]

# Below methods will get you the values.# Method 1:

a[a.argsort()][-5:]

# Method 2:

np.sort(a)[-5:]

# Method 3:

np.partition(a, kth=-5)[-5:]

# Method 4:

a[np.argpartition(-a, 5)][:5]

  1. 計(jì)算數(shù)組中所有可能值的行數(shù)访递?

# 輸出包含10列晦嵌,表示從1到10的數(shù)字。這些值是各行中數(shù)字的計(jì)數(shù)拷姿。 例如惭载,cell(0,2)的值為2响巢,這意味著數(shù)字3在第一行中恰好出現(xiàn)了2次棕兼。

np.random.seed(100)

arr = np.random.randint(1,11,size=(6, 10))

# Solution

def counts_of_all_values_rowwise(arr2d):

    # Unique values and its counts row wise

    num_counts_array = [np.unique(row, return_counts=True) for row in arr2d]

    # Counts of all values row wise

    return([[int(b[a==i]) if i in a else 0 for i in np.unique(arr2d)] for a, b in num_counts_array])

# Printprint(np.arange(1,11))

counts_of_all_values_rowwise(arr)

# Example 2:

arr = np.array([np.array(list('bill clinton')), np.array(list('narendramodi')), np.array(list('jjayalalitha'))])print(np.unique(arr))

counts_of_all_values_rowwise(arr)

50.將數(shù)組轉(zhuǎn)換為平面一維數(shù)組?


# **給定:**

arr1 = np.arange(3)

arr2 = np.arange(3,7)

arr3 = np.arange(7,10)

array_of_arrays = np.array([arr1, arr2, arr3])print('array_of_arrays: ', array_of_arrays)

# Solution 1

arr_2d = np.array([a for arr in array_of_arrays for a in arr])

# Solution 2:

arr_2d = np.concatenate(array_of_arrays)print(arr_2d)

  1. 在numpy中為數(shù)組生成單熱編碼抵乓?

# **給定:**

np.random.seed(101)

arr = np.random.randint(1,4, size=6)

arr

# > array([2, 3, 2, 2, 2, 1])

# Solution:def one_hot_encodings(arr):

    uniqs = np.unique(arr)

    out = np.zeros((arr.shape[0], uniqs.shape[0]))

    for i, k in enumerate(arr):

        out[i, k-1] = 1

    return out

one_hot_encodings(arr)

# Method 2:

(arr[:, None] == np.unique(arr)).view(np.int8)

52.創(chuàng)建按分類變量分組的行號(hào)?


# **給定:**

url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'

species = np.genfromtxt(url, delimiter=',', dtype='str', usecols=4)

np.random.seed(100)

species_small = np.sort(np.random.choice(species, size=20))

species_small

print([i for val in np.unique(species_small) for i, grp in enumerate(species_small[species_small==val])])

  1. 根據(jù)給定的分類變量創(chuàng)建組ID靶衍?

# **給定:**

url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'

species = np.genfromtxt(url, delimiter=',', dtype='str', usecols=4)

np.random.seed(100)

species_small = np.sort(np.random.choice(species, size=20))

species_small

# Solution:

output = [np.argwhere(np.unique(species_small) == s).tolist()[0][0] for val in np.unique(species_small) for s in species_small[species_small==val]]

# Solution: For Loop version

output = []

uniqs = np.unique(species_small)

for val in uniqs:  # uniq values in group

    for s in species_small[species_small==val]:  # each element in group

        groupid = np.argwhere(uniqs == s).tolist()[0][0]  # groupid

        output.append(groupid)

print(output)

  1. 使用numpy對(duì)數(shù)組中的項(xiàng)進(jìn)行排名灾炭?

np.random.seed(10)

a = np.random.randint(20, size=10)print('Array: ', a)

# Solutionprint(a.argsort().argsort())print('Array: ', a)

55.使用numpy對(duì)多維數(shù)組中的項(xiàng)進(jìn)行排名?


# **給定:**

np.random.seed(10)

a = np.random.randint(20, size=[2,5])print(a)

# Solutionprint(a.ravel().argsort().argsort().reshape(a.shape))

56.在二維numpy數(shù)組的每一行中找到最大值颅眶?


# Input

np.random.seed(100)

a = np.random.randint(1,10, [5,3])

a

# Solution 1

np.amax(a, axis=1)

# Solution 2

np.apply_along_axis(np.max, arr=a, axis=1)

57.計(jì)算二維numpy數(shù)組每行的最小值蜈出?


# Input

np.random.seed(100)

a = np.random.randint(1,10, [5,3])

a

# Solution

np.apply_along_axis(lambda x: np.min(x)/np.max(x), arr=a, axis=1)

58.在numpy數(shù)組中找到重復(fù)的記錄?


# Input

np.random.seed(100)

a = np.random.randint(0, 5, 10)

## Solution# There is no direct function to do this as of 1.13.3

# Create an all True array

out = np.full(a.shape[0], True)

# Find the index positions of unique elements

unique_positions = np.unique(a, return_index=True)[1]

# Mark those positions as False

out[unique_positions] = False

print(out)

59.找出數(shù)字的分組均值涛酗?


# Input

url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'

iris = np.genfromtxt(url, delimiter=',', dtype='object')

names = ('sepallength', 'sepalwidth', 'petallength', 'petalwidth', 'species')

# Solution# No direct way to implement this. Just a version of a workaround.

numeric_column = iris[:, 1].astype('float')  # sepalwidth

grouping_column = iris[:, 4]  # species

# List comprehension version[[group_val, numeric_column[grouping_column==group_val].mean()] for group_val in np.unique(grouping_column)]

# For Loop version

output = []for group_val in np.unique(grouping_column):

    output.append([group_val, numeric_column[grouping_column==group_val].mean()])

output

60.將PIL圖像轉(zhuǎn)換為numpy數(shù)組铡原?


from io import BytesIO

from PIL import Image

import PIL, requests

# Import image from URL

URL = 'https://img2.baidu.com/it/u=982549611,3731122317&fm=26&fmt=auto&gp=0.jpg'

response = requests.get(URL)

# Read it as Image

I = Image.open(BytesIO(response.content))

# Optionally resize

I = I.resize([150,150])

# Convert to numpy array

arr = np.asarray(I)

# Optionaly Convert it back to an image and show

im = PIL.Image.fromarray(np.uint8(arr))

Image.Image.show(im)

61.刪除numpy數(shù)組中所有缺少的值?


a = np.array([1,2,3,np.nan,5,6,7,np.nan])

a[~np.isnan(a)]

62.計(jì)算兩個(gè)數(shù)組之間的歐氏距離商叹?


# Input

a = np.array([1,2,3,4,5])

b = np.array([4,5,6,7,8])

# Solution

dist = np.linalg.norm(a-b)

dist

63.在一維數(shù)組中找到所有的局部極大值(或峰值)燕刻?


a = np.array([1, 3, 7, 1, 2, 6, 0, 1])

doublediff = np.diff(np.sign(np.diff(a)))

peak_locations = np.where(doublediff == -2)[0] + 1

peak_locations

64.從二維數(shù)組中減去一維數(shù)組,其中一維數(shù)組的每一項(xiàng)從各自的行中減去剖笙?


# Input

a_2d = np.array([[3,3,3],[4,4,4],[5,5,5]])

b_1d = np.array([1,2,3])

# Solution

print(a_2d - b_1d[:,None])

65.查找數(shù)組中項(xiàng)的第n次重復(fù)索引卵洗?


x = np.array([1, 2, 1, 1, 3, 4, 3, 1, 1, 2, 1, 1, 2])

n = 5

# Solution 1: List comprehension[i for i, v in enumerate(x) if v == 1][n-1]

# Solution 2: Numpy version

np.where(x == 1)[0][n-1]

66.將numpy的datetime 64對(duì)象轉(zhuǎn)換為datetime的datetime對(duì)象?


# **給定:** a numpy datetime64 object

dt64 = np.datetime64('2018-02-25 22:10:10')

# Solutionfrom datetime import datetime

dt64.tolist()

# or

dt64.astype(datetime)

67.計(jì)算numpy數(shù)組的移動(dòng)平均值弥咪?


# Solution# Source: https://stackoverflow.com/questions/14313510/how-to-calculate-moving-average-using-numpydef moving_average(a, n=3) :

    ret = np.cumsum(a, dtype=float)

    ret[n:] = ret[n:] - ret[:-n]

    return ret[n - 1:] / n

np.random.seed(100)

Z = np.random.randint(10, size=10)print('array: ', Z)# Method 1

moving_average(Z, n=3).round(2)

# Method 2:  # Thanks AlanLRH!# np.ones(3)/3 gives equal weights. Use np.ones(4)/4 for window size 4.

np.convolve(Z, np.ones(3)/3, mode='valid') .

68.在給定起始點(diǎn)过蹂、長度和步驟的情況下創(chuàng)建一個(gè)numpy數(shù)組序列?


length = 10

start = 5

step = 3

def seq(start, length, step):

    end = start + (step*length)

    return np.arange(start, end, step)

seq(start, length, step)

69.填寫不規(guī)則系列的numpy日期中的缺失日期聚至?


# Input

dates = np.arange(np.datetime64('2018-02-01'), np.datetime64('2018-02-25'), 2)print(dates)

# Solution ---------------

filled_in = np.array([np.arange(date, (date+d)) for date, d in zip(dates, np.diff(dates))]).reshape(-1)

# add the last day

output = np.hstack([filled_in, dates[-1]])

output

# For loop version -------

out = []for date, d in zip(dates, np.diff(dates)):

    out.append(np.arange(date, (date+d)))

filled_in = np.array(out).reshape(-1)

# add the last day

output = np.hstack([filled_in, dates[-1]])

output

70.從給定的一維數(shù)組創(chuàng)建步長酷勺?


def gen_strides(a, stride_len=5, window_len=5):

    n_strides = ((a.size-window_len)//stride_len) + 1

    # return np.array([a[s:(s+window_len)] for s in np.arange(0, a.size, stride_len)[:n_strides]])

    return np.array([a[s:(s+window_len)] for s in np.arange(0, n_strides*stride_len, stride_len)])

print(gen_strides(np.arange(15), stride_len=2, window_len=4))

文章鏈接:

101 NumPy Exercises for Data Analysis (Python)

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市扳躬,隨后出現(xiàn)的幾起案子脆诉,更是在濱河造成了極大的恐慌甚亭,老刑警劉巖,帶你破解...
    沈念sama閱讀 219,110評(píng)論 6 508
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件库说,死亡現(xiàn)場(chǎng)離奇詭異狂鞋,居然都是意外死亡,警方通過查閱死者的電腦和手機(jī)潜的,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 93,443評(píng)論 3 395
  • 文/潘曉璐 我一進(jìn)店門骚揍,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人啰挪,你說我怎么就攤上這事信不。” “怎么了亡呵?”我有些...
    開封第一講書人閱讀 165,474評(píng)論 0 356
  • 文/不壞的土叔 我叫張陵抽活,是天一觀的道長。 經(jīng)常有香客問我锰什,道長下硕,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 58,881評(píng)論 1 295
  • 正文 為了忘掉前任汁胆,我火速辦了婚禮梭姓,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘嫩码。我一直安慰自己誉尖,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,902評(píng)論 6 392
  • 文/花漫 我一把揭開白布铸题。 她就那樣靜靜地躺著铡恕,像睡著了一般。 火紅的嫁衣襯著肌膚如雪丢间。 梳的紋絲不亂的頭發(fā)上探熔,一...
    開封第一講書人閱讀 51,698評(píng)論 1 305
  • 那天,我揣著相機(jī)與錄音千劈,去河邊找鬼祭刚。 笑死,一個(gè)胖子當(dāng)著我的面吹牛墙牌,可吹牛的內(nèi)容都是我干的涡驮。 我是一名探鬼主播,決...
    沈念sama閱讀 40,418評(píng)論 3 419
  • 文/蒼蘭香墨 我猛地睜開眼喜滨,長吁一口氣:“原來是場(chǎng)噩夢(mèng)啊……” “哼捉捅!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起虽风,我...
    開封第一講書人閱讀 39,332評(píng)論 0 276
  • 序言:老撾萬榮一對(duì)情侶失蹤棒口,失蹤者是張志新(化名)和其女友劉穎寄月,沒想到半個(gè)月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體无牵,經(jīng)...
    沈念sama閱讀 45,796評(píng)論 1 316
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡漾肮,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,968評(píng)論 3 337
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了茎毁。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片克懊。...
    茶點(diǎn)故事閱讀 40,110評(píng)論 1 351
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖七蜘,靈堂內(nèi)的尸體忽然破棺而出谭溉,到底是詐尸還是另有隱情,我是刑警寧澤橡卤,帶...
    沈念sama閱讀 35,792評(píng)論 5 346
  • 正文 年R本政府宣布扮念,位于F島的核電站,受9級(jí)特大地震影響碧库,放射性物質(zhì)發(fā)生泄漏柜与。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,455評(píng)論 3 331
  • 文/蒙蒙 一嵌灰、第九天 我趴在偏房一處隱蔽的房頂上張望旅挤。 院中可真熱鬧,春花似錦伞鲫、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 32,003評(píng)論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至儒搭,卻和暖如春吠架,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背搂鲫。 一陣腳步聲響...
    開封第一講書人閱讀 33,130評(píng)論 1 272
  • 我被黑心中介騙來泰國打工傍药, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人魂仍。 一個(gè)月前我還...
    沈念sama閱讀 48,348評(píng)論 3 373
  • 正文 我出身青樓拐辽,卻偏偏與公主長得像,于是被迫代替她去往敵國和親擦酌。 傳聞我的和親對(duì)象是個(gè)殘疾皇子俱诸,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 45,047評(píng)論 2 355