1圈膏、問題
給定一個二叉樹與整數(shù)sum塔猾,找出所有從根節(jié)點到葉結(jié)點的路徑,這些路 徑上的節(jié)點值累加和為sum稽坤。
2丈甸、算法思路
- 從根節(jié)點深度遍歷二叉樹,先序遍歷時尿褪,將該節(jié)點值存儲至path棧中(vector實 現(xiàn))睦擂,使用 path_value累加節(jié)點值。
- 當(dāng)遍歷至葉結(jié)點時茫多,檢查path_value值是否為sum祈匙,若為sum忽刽,則將path push 進入result結(jié)果中天揖。
- 在后續(xù)遍歷時夺欲,將該節(jié)點值從path棧中彈出,path_value減去節(jié)點值今膊。
3些阅、代碼實現(xiàn)
#include <iostream>
#include <vector>
using namespace std;
struct TreeNode
{
int val;
TreeNode* left;
TreeNode* right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
class Solution
{
public:
vector< vector<int> > pathSum(TreeNode* root, int sum)
{
// 求以root為根結(jié)點的二叉樹中,
// 哪些路徑(從根結(jié)點到葉節(jié)點)的總和為sum.
vector< vector<int> > result; // 保存最終結(jié)果
vector<int> path; // 單條路徑
int path_value = 0; // 路徑和
preorder(root, sum, result, path, path_value);
return result;
}
private:
void preorder(TreeNode* node, int sum, vector< vector<int> >& result,
vector<int>& path, int& path_value)
{
if ( !node )
return;
// 針對于當(dāng)前節(jié)點斑唬,先加
path_value += node->val;
// 并保存到路徑path中
path.push_back(node->val);
// 判斷一下
if (node -> left == NULL && node->right == NULL && path_value == sum)
{
result.push_back(path);
}
preorder(node->left, sum, result, path, path_value);
preorder(node->right, sum, result, path, path_value);
// 左右節(jié)點都處理完后
path_value -= node->val;
path.pop_back();
}
};
int main()
{
TreeNode a(5);
TreeNode b(4);
TreeNode c(8);
TreeNode d(11);
TreeNode e(13);
TreeNode f(4);
TreeNode g(7);
TreeNode h(2);
TreeNode i(5);
TreeNode j(1);
a.left = &b;
a.right = &c;
b.left = &d;
d.left = &g;
d.right = &h;
c.left = &e;
c.right = &f;
f.left = &i;
f.right = &j;
Solution S;
vector< vector<int> > result = S.pathSum(&a, 22);
cout << "total path number: " << result.size() << endl;
// 包裝一下打印結(jié)果
cout << "[" << endl;
for (int i = 0; i < result.size(); i++)
{
cout << "\t[";
for (int j = 0; j < result[i].size(); j++)
{
if (j == (result[i].size() - 1))
cout << result[i][j];
else
cout << result[i][j] << ",";
}
if (i == (result.size() - 1))
cout << "]" << endl;
else
cout << "]," << endl;
}
cout << "]" << endl;
return 0;
}