最近在做基于標簽的圈人顽馋。通過bitmap來做,使用開源的RoaringBitmap幌羞,數(shù)據(jù)存儲在hive上寸谜。
開始是通過greenplum的pxf插件,將數(shù)據(jù)導(dǎo)入到gp属桦,然后聚合標簽生成Roaringbitmap熊痴。
但是這樣的方式效率低,于是在spark中構(gòu)建聂宾,然后將構(gòu)建好的bitmap導(dǎo)入gp中果善。
開始使用udaf的方式 這樣計算效率較低
import org.apache.spark.sql.Row;
import org.apache.spark.sql.expressions.MutableAggregationBuffer;
import org.apache.spark.sql.expressions.UserDefinedAggregateFunction;
import org.apache.spark.sql.types.DataType;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
import org.roaringbitmap.RoaringBitmap;
import java.io.*;
import java.util.ArrayList;
import java.util.List;
/**
* 實現(xiàn)自定義聚合函數(shù)Bitmap
*/
public class UdafBitMap extends UserDefinedAggregateFunction {
@Override
public StructType inputSchema() {
List<StructField> structFields = new ArrayList<>();
structFields.add(DataTypes.createStructField("field", DataTypes.BinaryType, true));
return DataTypes.createStructType(structFields);
}
@Override
public StructType bufferSchema() {
List<StructField> structFields = new ArrayList<>();
structFields.add(DataTypes.createStructField("field", DataTypes.BinaryType, true));
return DataTypes.createStructType(structFields);
}
@Override
public DataType dataType() {
return DataTypes.LongType;
}
@Override
public boolean deterministic() {
//是否強制每次執(zhí)行的結(jié)果相同
return false;
}
@Override
public void initialize(MutableAggregationBuffer buffer) {
//初始化
buffer.update(0, null);
}
@Override
public void update(MutableAggregationBuffer buffer, Row input) {
// 相同的executor間的數(shù)據(jù)合并
// 1. 輸入為空直接返回不更新
Object in = input.get(0);
if(in == null){
return ;
}
// 2. 源為空則直接更新值為輸入
byte[] inBytes = (byte[]) in;
Object out = buffer.get(0);
if(out == null){
buffer.update(0, inBytes);
return ;
}
// 3. 源和輸入都不為空使用bitmap去重合并
byte[] outBytes = (byte[]) out;
byte[] result = outBytes;
RoaringBitmap outRR = new RoaringBitmap();
RoaringBitmap inRR = new RoaringBitmap();
try {
outRR.deserialize(new DataInputStream(new ByteArrayInputStream(outBytes)));
inRR.deserialize(new DataInputStream(new ByteArrayInputStream(inBytes)));
outRR.or(inRR);
ByteArrayOutputStream bos = new ByteArrayOutputStream();
outRR.serialize(new DataOutputStream(bos));
result = bos.toByteArray();
} catch (IOException e) {
e.printStackTrace();
}
buffer.update(0, result);
}
@Override
public void merge(MutableAggregationBuffer buffer1, Row buffer2) {
//不同excutor間的數(shù)據(jù)合并
update(buffer1, buffer2);
}
@Override
public Object evaluate(Row buffer) {
//根據(jù)Buffer計算結(jié)果
long r = 0l;
Object val = buffer.get(0);
if (val != null) {
RoaringBitmap rr = new RoaringBitmap();
try {
rr.deserialize(new DataInputStream(new ByteArrayInputStream((byte[]) val)));
r = rr.getLongCardinality();
} catch (IOException e) {
e.printStackTrace();
}
}
return r;
}
}
因為RoaringBitmap是復(fù)雜的類,不能直接存儲gp系谐,需要序列化成 bytea 類型巾陕。
基本思路是每個分區(qū)的數(shù)據(jù)構(gòu)建一個bitmap,然后序列化到hdfs上,通過pxf
插件鄙煤,建立外表的方式將數(shù)據(jù)導(dǎo)入gp
1.gp中建表dim_{colName}_tag(id int,userids bytea)晾匠。此處是bytea類型。
2.在spark中建立roaringbitmap梯刚。每個分區(qū)的數(shù)據(jù)生成一個bitmap混聊,然后序列化。這里使用scala寫的
mp.foreach(m => {
val v = m._1
val d = m._2
println(s"current tag $t1xjfzv col_value ${v}")
val colsql = s"select $nft3317,row_id from mytable where ${col} = ${v}"
val coldf = spark.sql(colsql)
val res = coldf.mapPartitions(each => {
val mrb = new RoaringBitmap()
each.map(_.getLong(1).toInt).toList.foreach(mrb.add(_))
mrb.runOptimize()
val array = new Array[Byte](mrb.serializedSizeInBytes)
mrb.serialize(new DataOutputStream(new OutputStream() {
var c = 0
override
def close(): Unit = {
}
override
def flush(): Unit = {
}
override
def write(b: Int): Unit = {
array({
c += 1;
c - 1
}) = b.toByte
}
override
def write(b: Array[Byte]): Unit = {
write(b, 0, b.length)
}
override
def write(b: Array[Byte], off: Int, l: Int): Unit = {
System.arraycopy(b, off, array, c, l)
c += l
}
}))
Iterator((d, array))
})
3.spark數(shù)據(jù)寫到保存到hdfs乾巧,可以采用parquet格式。
4.在gp中建立外表预愤。使用pxf插件沟于。
CREATE EXTERNAL TABLE dim_${colName}_$tag(tag int,row_id bytea) LOCATION ('pxf:/$RELATE_ROW_PATH/pt=$pt/$tag?PROFILE=hdfs:parquet') FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');"
這里外表與hdfs的目錄對應(yīng)。這樣可以導(dǎo)入數(shù)據(jù)到gp中植康。
5.最重要的一步旷太,就是將序列化的RoaringBitmap反序列化生成roaringbitmap。
建立tagtable(id int,userids roaringbitmap)销睁。需要提前安裝roaringbitmap插件供璧。
"INSERT INTO btable SELECT tag, rb_or_agg(cast(cast(row_id as varchar) as roaringbitmap)), current_timestamp from dim_${colName}_$tag group by tag;"
最核心的部分是
- cast(row_id as varchar) 二進制數(shù)據(jù)轉(zhuǎn)成字符
- cast(cast(row_id as varchar) as roaringbitmap 字符轉(zhuǎn)成roaringbitmap。
目前冻记,只找到了這重點方法睡毒。雖然官網(wǎng)提供了spark-gp的connector,但是沒有測試成功將bytea數(shù)據(jù)直接寫入gp冗栗。
只能中間導(dǎo)入的方式演顾。