Anaconda安裝Keras

創(chuàng)建環(huán)境

創(chuàng)建名為Keras的環(huán)境

pc@ubuntu2:~$ conda create --name keras python=3.6
Solving environment: done
......
#
# To activate this environment, use:
# > source activate keras
#
# To deactivate an active environment, use:
# > source deactivate
#

進(jìn)入環(huán)境

查看已創(chuàng)建的環(huán)境,進(jìn)入名為Keras的環(huán)境

pc@ubuntu2:~$ conda info --envs
# conda environments:
#
base                  *  /home/pc/anaconda3
keras                    /home/pc/anaconda3/envs/keras

pc@ubuntu2:~$ source activate keras

安裝Keras庫

(keras) pc@ubuntu2:~$ conda install keras
······
Downloading and Extracting Packages
mkl-2018.0.3         | 198.7 MB  | ################################################################################################################# | 100% 
Preparing transaction: done
Verifying transaction: done
Executing transaction: done

(keras) pc@ubuntu2:~$ python
Python 3.6.7 |Anaconda, Inc.| (default, Oct 23 2018, 19:16:44) 
[GCC 7.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from keras.models import Sequential
Using TensorFlow backend.
>>> 

安裝keras成功

與pycharm連接

創(chuàng)建項(xiàng)目目錄

pc@ubuntu2:~/UserData/wy/projects$ mkdir LSTM
pc@ubuntu2:~/UserData/wy/projects$ ll
total 16
drwxrwxr-x 4 pc pc 4096 Dec 14 16:07 ./
drwxrwxr-x 3 pc pc 4096 Dec  6 14:49 ../
drwxrwxr-x 2 pc pc 4096 Dec 14 16:07 LSTM/
drwxrwxr-x 2 pc pc 4096 Dec  6 14:52 RNN/

添加遠(yuǎn)程部署環(huán)境

從RUN—>Deployment->Configuration進(jìn)去給項(xiàng)目單獨(dú)部署


添加遠(yuǎn)程部署環(huán)境

配置部署地址

配置部署地址

配置部署文件映射

配置部署文件映射

配置遠(yuǎn)程編譯環(huán)境

添加ssh遠(yuǎn)程連接

添加ssh遠(yuǎn)程連接

連接信息

遠(yuǎn)程連接用戶和密碼

配置遠(yuǎn)程編譯環(huán)境目錄和遠(yuǎn)程項(xiàng)目目錄

配置遠(yuǎn)程編譯環(huán)境目錄和遠(yuǎn)程項(xiàng)目目錄

keras使用GPU

keras使用TensorFlow作為后端,使用上述安裝命令conda install keras會(huì)將TensorFlow的cpu版本作為依賴包下載下來剥扣,因此運(yùn)行程序時(shí)默認(rèn)使用的是CPU观谦。

  • 使用CPU的日志例子,
PyDev console: starting.
Python 3.6.7 |Anaconda, Inc.| (default, Oct 23 2018, 19:16:44) 
[GCC 7.3.0] on linux
runfile('/home/pc/UserData/wy/keras/LSTM/6.Building the LSTM model.py', wdir='/home/pc/UserData/wy/keras/LSTM')
Using TensorFlow backend.
2018-12-14 22:47:01.057923: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA
2018-12-14 22:47:01.067905: I tensorflow/core/common_runtime/process_util.cc:69] Creating new thread pool with default inter op setting: 2. Tune using inter_op_parallelism_threads for best performance.
Month=1, Predicted=322.961307, Expected=339.700000
Month=2, Predicted=359.407819, Expected=440.400000
Month=3, Predicted=340.123599, Expected=315.900000
Month=4, Predicted=386.167338, Expected=439.300000
Month=5, Predicted=329.620121, Expected=401.300000
Month=6, Predicted=405.771963, Expected=437.400000
Month=7, Predicted=438.331251, Expected=575.500000
Month=8, Predicted=400.997520, Expected=407.600000
Month=9, Predicted=470.708216, Expected=682.000000
Month=10, Predicted=573.164068, Expected=475.300000
Month=11, Predicted=585.886681, Expected=581.300000
Month=12, Predicted=527.363607, Expected=646.900000
Test RMSE: 92.996

使用GPU

安裝TensorFlow的GPU版本陨倡,則會(huì)自動(dòng)檢測并使用GPU

conda install tensorflow-gpu

  • 使用GPU的日志例子
PyDev console: starting.
Python 3.6.7 |Anaconda, Inc.| (default, Oct 23 2018, 19:16:44) 
[GCC 7.3.0] on linux
runfile('/home/pc/UserData/wy/keras/LSTM/6.Building the LSTM model.py', wdir='/home/pc/UserData/wy/keras/LSTM')
Using TensorFlow backend.
2018-12-17 09:41:29.733813: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA
2018-12-17 09:41:33.649586: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1432] Found device 0 with properties: 
name: GeForce RTX 2080 Ti major: 7 minor: 5 memoryClockRate(GHz): 1.605
pciBusID: 0000:04:00.0
totalMemory: 10.73GiB freeMemory: 10.53GiB
2018-12-17 09:41:33.906894: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1432] Found device 1 with properties: 
name: GeForce RTX 2080 Ti major: 7 minor: 5 memoryClockRate(GHz): 1.605
pciBusID: 0000:08:00.0
totalMemory: 10.73GiB freeMemory: 10.53GiB
2018-12-17 09:41:34.216963: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1432] Found device 2 with properties: 
name: GeForce RTX 2080 Ti major: 7 minor: 5 memoryClockRate(GHz): 1.605
pciBusID: 0000:85:00.0
totalMemory: 10.73GiB freeMemory: 10.53GiB
2018-12-17 09:41:34.503535: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1432] Found device 3 with properties: 
name: GeForce RTX 2080 Ti major: 7 minor: 5 memoryClockRate(GHz): 1.605
pciBusID: 0000:89:00.0
totalMemory: 10.73GiB freeMemory: 10.53GiB
2018-12-17 09:41:34.504071: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1511] Adding visible gpu devices: 0, 1, 2, 3
2018-12-17 09:41:36.161357: I tensorflow/core/common_runtime/gpu/gpu_device.cc:982] Device interconnect StreamExecutor with strength 1 edge matrix:
2018-12-17 09:41:36.161410: I tensorflow/core/common_runtime/gpu/gpu_device.cc:988]      0 1 2 3 
2018-12-17 09:41:36.161418: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 0:   N N N N 
2018-12-17 09:41:36.161423: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 1:   N N N N 
2018-12-17 09:41:36.161427: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 2:   N N N N 
2018-12-17 09:41:36.161431: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 3:   N N N N 
2018-12-17 09:41:36.162345: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 10168 MB memory) -> physical GPU (device: 0, name: GeForce RTX 2080 Ti, pci bus id: 0000:04:00.0, compute capability: 7.5)
2018-12-17 09:41:36.163036: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:1 with 10168 MB memory) -> physical GPU (device: 1, name: GeForce RTX 2080 Ti, pci bus id: 0000:08:00.0, compute capability: 7.5)
2018-12-17 09:41:36.163583: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:2 with 10168 MB memory) -> physical GPU (device: 2, name: GeForce RTX 2080 Ti, pci bus id: 0000:85:00.0, compute capability: 7.5)
2018-12-17 09:41:36.164005: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:3 with 10168 MB memory) -> physical GPU (device: 3, name: GeForce RTX 2080 Ti, pci bus id: 0000:89:00.0, compute capability: 7.5)
Month=1, Predicted=283.869118, Expected=339.700000
Month=2, Predicted=317.888545, Expected=440.400000
Month=3, Predicted=305.633642, Expected=315.900000
Month=4, Predicted=365.284169, Expected=439.300000
Month=5, Predicted=302.728278, Expected=401.300000
Month=6, Predicted=369.501726, Expected=437.400000
Month=7, Predicted=405.976962, Expected=575.500000
Month=8, Predicted=358.590047, Expected=407.600000
Month=9, Predicted=435.379599, Expected=682.000000
Month=10, Predicted=356.173705, Expected=475.300000
Month=11, Predicted=440.317673, Expected=581.300000
Month=12, Predicted=381.672660, Expected=646.900000
Test RMSE: 139.765

參考鏈接

Linux下使用anaconda安裝Keras
python – 如何檢查keras是否使用gpu版本的tensorflow贿肩?

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末座哩,一起剝皮案震驚了整個(gè)濱河市苍凛,隨后出現(xiàn)的幾起案子趣席,更是在濱河造成了極大的恐慌,老刑警劉巖醇蝴,帶你破解...
    沈念sama閱讀 219,039評(píng)論 6 508
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件宣肚,死亡現(xiàn)場離奇詭異,居然都是意外死亡悠栓,警方通過查閱死者的電腦和手機(jī)霉涨,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 93,426評(píng)論 3 395
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來惭适,“玉大人笙瑟,你說我怎么就攤上這事●荆” “怎么了往枷?”我有些...
    開封第一講書人閱讀 165,417評(píng)論 0 356
  • 文/不壞的土叔 我叫張陵,是天一觀的道長凄杯。 經(jīng)常有香客問我错洁,道長,這世上最難降的妖魔是什么戒突? 我笑而不...
    開封第一講書人閱讀 58,868評(píng)論 1 295
  • 正文 為了忘掉前任屯碴,我火速辦了婚禮,結(jié)果婚禮上膊存,老公的妹妹穿的比我還像新娘导而。我一直安慰自己,他們只是感情好膝舅,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,892評(píng)論 6 392
  • 文/花漫 我一把揭開白布嗡载。 她就那樣靜靜地躺著,像睡著了一般仍稀。 火紅的嫁衣襯著肌膚如雪洼滚。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 51,692評(píng)論 1 305
  • 那天技潘,我揣著相機(jī)與錄音遥巴,去河邊找鬼千康。 笑死,一個(gè)胖子當(dāng)著我的面吹牛铲掐,可吹牛的內(nèi)容都是我干的拾弃。 我是一名探鬼主播,決...
    沈念sama閱讀 40,416評(píng)論 3 419
  • 文/蒼蘭香墨 我猛地睜開眼摆霉,長吁一口氣:“原來是場噩夢啊……” “哼豪椿!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起携栋,我...
    開封第一講書人閱讀 39,326評(píng)論 0 276
  • 序言:老撾萬榮一對(duì)情侶失蹤搭盾,失蹤者是張志新(化名)和其女友劉穎,沒想到半個(gè)月后婉支,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體鸯隅,經(jīng)...
    沈念sama閱讀 45,782評(píng)論 1 316
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,957評(píng)論 3 337
  • 正文 我和宋清朗相戀三年向挖,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了蝌以。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 40,102評(píng)論 1 350
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡何之,死狀恐怖跟畅,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情溶推,我是刑警寧澤碍彭,帶...
    沈念sama閱讀 35,790評(píng)論 5 346
  • 正文 年R本政府宣布,位于F島的核電站悼潭,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏舞箍。R本人自食惡果不足惜舰褪,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,442評(píng)論 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望疏橄。 院中可真熱鬧占拍,春花似錦、人聲如沸捎迫。這莊子的主人今日做“春日...
    開封第一講書人閱讀 31,996評(píng)論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽窄绒。三九已至贝次,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間彰导,已是汗流浹背蛔翅。 一陣腳步聲響...
    開封第一講書人閱讀 33,113評(píng)論 1 272
  • 我被黑心中介騙來泰國打工敲茄, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人山析。 一個(gè)月前我還...
    沈念sama閱讀 48,332評(píng)論 3 373
  • 正文 我出身青樓堰燎,卻偏偏與公主長得像,于是被迫代替她去往敵國和親笋轨。 傳聞我的和親對(duì)象是個(gè)殘疾皇子秆剪,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 45,044評(píng)論 2 355

推薦閱讀更多精彩內(nèi)容