控制器設(shè)計
輸出選項:
如下所示贺喝,4個控制器都被考慮為單個POV(儲罐液位)定義CV而構(gòu)建:
懲罰項:
4個控制器包含了以下調(diào)整權(quán)重:
名稱 | Damping(阻尼) | Weight(權(quán)重) |
---|---|---|
Outlet Flow OP | 1.0 | 0.5 |
名稱 | Deviation(偏差) | Weight(權(quán)重) |
Vessel Level | 1.0 | 1.0 |
壓縮點(diǎn):
我們所考慮的4個控制器都搭建有以下的壓縮點(diǎn):
|控制器名稱 |輸入時域:最近的壓縮點(diǎn) | 穩(wěn)定時間 | 輸出時域:最近的壓縮點(diǎn) |
| ------------- |:-------------:|: -----:|-----:|
| 缺省| 100| 1 |101|
|Short_MV_Horizon| 10| 1| 11|
|Medium_MV_Horizon| 50| 1 |51|
|Long_MV_Horizon| 150 |1 |151|
需要注意的是自動計算(默認(rèn))出的MV時域被隨機(jī)指定為100 × dT包颁。這是當(dāng)沒有正確的瞬態(tài)動力學(xué)時啡彬,必須指定對MV時域作一個決定的情況下咆耿。在這種情況下德谅,我們感興趣的是理解當(dāng)改變MV時域時,對控制器性能的影響萨螺。仔細(xì)選擇時域涉及到的一些附加輸入/輸出壓縮點(diǎn)以允許控制器增大/減小它的預(yù)測范圍窄做,同時計算動作計劃。
為了研究不同MV時域的影響慰技,將默認(rèn)控制器拷貝到一個新的名稱為“Short_MV_Horizon”的控制器椭盏。定位到壓縮點(diǎn)選項卡并單擊Calculator(計算器)按鈕。在這里人們可以方便地訪問子控制器的輸入時域和穩(wěn)定時間吻商。計算器窗口被設(shè)定為如下所示掏颊,以便允許動作計劃的一些自由度,以及更多的控制誤差預(yù)測貢獻(xiàn)艾帐。如下所示乌叶,對Short_MV_Horizon的輸入時域指定為10:
然后生成一個壓縮列表,Default in Use(默認(rèn)使用)按鈕被切換到Reset to Default(重置為默認(rèn)值)柒爸。
繼續(xù)搭建中/長MV時域的兩個控制器准浴。
仿真
仿真的目的是為了檢查當(dāng)改變MV時域時對控制器性能的影響。
所有的仿真場景的初始工藝操作條件如下:
儲罐液位起始于50(Setrange High設(shè)定高限 = Setrange Low設(shè)定低限 = 50)捎稚。
MV的初始值穩(wěn)定在50乐横,最大值為100,最小值為0今野,最大動作步幅為2葡公。
進(jìn)口流量Inlet Flow (DV)的初始操作點(diǎn)為0。
在第10步我們對進(jìn)口流量Inlet Flow引入一個10單位的斜坡干擾条霜。我們運(yùn)行100步仿真催什,并觀察SMOCPro計算的將儲罐液位帶回設(shè)定點(diǎn)的動作計劃。這4種情況下最后執(zhí)行步(101)的值都是一樣的蛔外,MV=60, CV=50 ,DV=10蛆楞。
原文:
***Controller Design ***
**Output Selection: **
Four controllers are considered all built with only the single POV (Vessel Level) defined as a CV as such:
**Penalties: **
The four controllers containg the following tuning weights:
|Name| Damping| Weight| Name |Deviation| Weight|
| ------------- |:-------------:| -----:|
|Outlet Flow OP| 1.0 |0.5 | Vessel Level| 1.0 |1.0|
Compaction points:
The four controllers under consideration are built with the following compaction points:
|Controller Name| Input Horizon (Last Comp. Point) |Settling Time | Output Horizon (Last Comp. Point)|
| ------------- |:-------------:|: -----:|-----:|
| Default| 100 |1| 101|
|Short_MV_Horizon |10 |1| 11|
|Medium_MV_Horizon| 50| 1 |51|
|Long_MV_Horizon| 150 |1 |151|
Notice that the automatically computed (default) MV horizon is arbitrarily specified to be 100 × dT. This is the result of not having true transient dynamics and having to make a decision as to what to specify the MV horizon to be. In this case, it is of interest to understand the effect that changing MV horizon has on controller performance. Carefully selecting the horizon involves appending some input/output compaction points to allow the controller to increase/decrease its prediction horizon while computing the plan of action.
To study the effect of varying the MV horizon, copy the Default controller onto a new controller called “Short_MV_Horizon.” Navigate to the Compaction Points tab and click on the Calculator button. Here one has easy access to the input horizon and the settling time of the sub-controller. The Calculator window is set as follows to allow some freedom in the plan of action as well as some more prediction contribution of the control errors. For the Short_MV_Horizon case specify 10 for the Input Horizon as follows:
Then, a list of compaction points is generated and the Default in Use button is toggled to Reset to Default.
Continue to build the remaining 2 controllers with the Medium and Long MV horizons.
Simulation
The objective of the simulation is to examine the effect of changing MV horizon on controller performance.
The initial process operation conditions for all the simulation scenarios are the following:
The Level in the vessel starts at 50 with a Setrange High = Setrange Low = 50.
The MV is initially holding steady at 50 with a Maximum value of 100, Minimum value of 0 and Maximum Move Size of 2.
The Inlet Flow (DV) starts at an operating point of 0.
At step 10 we introduce a ramp disturbance of 10 units into the inlet flow. We run the simulation for 100 steps and observe the planned moves that SMOCPro calculates to bring the vessel level back to setpoint. For all four cases the values at the last execution step (101) are the same, MV=60, CV=50 and DV=10.
2016.5.21