文章作者:Tyan
博客:noahsnail.com ?|? CSDN ?|? 簡書
1. 安裝依賴
- 安裝CUDA
下載地址:https://developer.nvidia.com/cuda-toolkit-archive占拍,本文采用的是CUDA 7.5版本奶赠。下載安裝之后搞坝,需要配置環(huán)境變量钞护,編輯/etc/profile',添加
PATH=$PATH:/Developer/NVIDIA/CUDA-7.5/bin`养渴。
- 安裝其它的依賴
通過Homebrew安裝所需要的其它依賴雷绢,其它依賴有g(shù)flags,snappy理卑,glog翘紊,hdf5,lmdb 藐唠,opencv3帆疟,boost,leveldb 中捆,protobuf鸯匹,webp(運行mnist數(shù)據(jù)集會用到)坊饶。命令如下:
# 安裝軟件
$ brew install software
# 創(chuàng)建軟件鏈接泄伪,有的需要,例如protobuf匿级,opencv3蟋滴,opencv3需要--force
$ brew link software --force
2. 安裝caffe
在Github上下載caffe源碼,地址為:https://github.com/BVLC/caffe痘绎,下載后在caffe根目錄創(chuàng)建build
文件夾津函,將Makefile.config.example
文件名改為Makefile.config
,修改Makefile.config文件孤页,修改如下:
將
# CPU_ONLY := 1
改為
CPU_ONLY := 1
將
# USE_OPENCV := 0
改為
USE_OPENCV := 1
將
# OPENCV_VERSION := 3
改為
OPENCV_VERSION := 3
將下面兩行
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas
改為:
BLAS_INCLUDE := /System/Library/Frameworks/Accelerate.framework/Versions/Current/Frameworks/vecLib.framework/Versions/Current/Headers
BLAS_LIB := /System/Library/Frameworks/Accelerate.framework/Versions/Current/Frameworks/vecLib.framework/Versions/Current
執(zhí)行make -j
尔苦,看到下面的內(nèi)容說明安裝caffe成功。
CXX/LD -o .build_release/tools/caffe.bin
CXX/LD -o .build_release/tools/compute_image_mean.bin
CXX/LD -o .build_release/tools/convert_imageset.bin
CXX/LD -o .build_release/tools/device_query.bin
CXX/LD -o .build_release/tools/extract_features.bin
CXX/LD -o .build_release/tools/finetune_net.bin
CXX/LD -o .build_release/tools/net_speed_benchmark.bin
CXX/LD -o .build_release/tools/test_net.bin
CXX/LD -o .build_release/tools/train_net.bin
CXX/LD -o .build_release/tools/upgrade_net_proto_binary.bin
CXX/LD -o .build_release/tools/upgrade_net_proto_text.bin
CXX/LD -o .build_release/tools/upgrade_solver_proto_text.bin
CXX/LD -o .build_release/examples/cifar10/convert_cifar_data.bin
clang: warning: argument unused during compilation: '-pthread'
clang: warning: argument unused during compilation: '-pthread'
clang: warning: argument unused during compilation: '-pthread'
clang: warning: argument unused during compilation: '-pthread'
clang: warning: argument unused during compilation: '-pthread'
clang: warning: argument unused during compilation: '-pthread'
clang: warning: argument unused during compilation: '-pthread'
clang: warning: argument unused during compilation: '-pthread'
CXX/LD -o .build_release/examples/cpp_classification/classification.bin
clang: warning: argument unused during compilation: '-pthread'
clang: warning: argument unused during compilation: '-pthread'
clang: warning: argument unused during compilation: '-pthread'
clang: warning: argument unused during compilation: '-pthread'
clang: warning: argument unused during compilation: '-pthread'
CXX/LD -o .build_release/examples/mnist/convert_mnist_data.bin
clang: warning: argument unused during compilation: '-pthread'
CXX/LD -o .build_release/examples/siamese/convert_mnist_siamese_data.bin
clangclang: : warningwarning: : argument unused during compilation: '-pthread'argument unused during compilation: '-pthread'
整個Makefile.config文件:
## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!
# cuDNN acceleration switch (uncomment to build with cuDNN).
# USE_CUDNN := 1
# CPU-only switch (uncomment to build without GPU support).
CPU_ONLY := 1
# uncomment to disable IO dependencies and corresponding data layers
USE_OPENCV := 1
# USE_LEVELDB := 0
# USE_LMDB := 0
# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
# You should not set this flag if you will be reading LMDBs with any
# possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1
# Uncomment if you're using OpenCV 3
OPENCV_VERSION := 3
# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++
# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr
# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
-gencode arch=compute_20,code=sm_21 \
-gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_50,code=compute_50
# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
BLAS_INCLUDE := /System/Library/Frameworks/Accelerate.framework/Versions/Current/Frameworks/vecLib.framework/Versions/Current/Headers
BLAS_LIB := /System/Library/Frameworks/Accelerate.framework/Versions/Current/Frameworks/vecLib.framework/Versions/Current
# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib
# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app
# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
PYTHON_INCLUDE := /usr/include/python2.7 \
/usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
# ANACONDA_HOME := $(HOME)/anaconda
# PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
# $(ANACONDA_HOME)/include/python2.7 \
# $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \
# Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
# /usr/lib/python3.5/dist-packages/numpy/core/include
# We need to be able to find libpythonX.X.so or .dylib.
PYTHON_LIB := /usr/lib
# PYTHON_LIB := $(ANACONDA_HOME)/lib
# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib
# Uncomment to support layers written in Python (will link against Python libs)
# WITH_PYTHON_LAYER := 1
# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib
# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1
# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute
# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1
# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0
# enable pretty build (comment to see full commands)
Q ?= @