61. 加載二手車數(shù)據(jù)集
df = pd.read_csv("used_cars.csv", index_col=0)
print(df.head(5))
62. 輸出df標(biāo)題字段列
print(list(df.columns))
63. 刪除數(shù)據(jù)列
df.drop("New_Price", axis=1, inplace=True)
print(df.columns)
64. 統(tǒng)計(jì)字段缺失值
print(df.isnull().sum())
65. 移除包含缺失值的行
print(df.info())
df.dropna(inplace=True)
print(df.info())
66. 將所有列名改成小寫
df.columns = [str(column).lower() for column in df.columns]
print(df.info())
67. 查看過戶次數(shù)的分布
print(df.columns)
print(df["owner_type"].value_counts())
68. 排量字段的處理分布
df["engine"] = df["engine"].map(lambda x: int(x[:-3]))
print(df["engine"].value_counts())
print(df[["name", "engine"]].head(5))
69. 馬力字段異常值的處理分布
df["power"] = np.where(df["power"] == "null bhp", np.nan, df["power"])
print(df["power"].value_counts()[:5])
70. 統(tǒng)計(jì)每年的二手車數(shù)量
print(df.columns)
print(df.groupby("year").size())
71. 自動(dòng)擋手動(dòng)擋的數(shù)字映射
print(df["transmission"].value_counts())
df["transmission"] = df["transmission"].map({"Manual":0, "Automatic":1})
print(df["transmission"].value_counts())
72. 保存csv文件
df.to_csv("cars.csv", index=False)
課程參考鏈接:https://ke.qq.com/course/4000626#term_id=104152097