可使用 GPU 的 DOCKER 容器
在 GPU 加速的數(shù)據(jù)中心內(nèi)輕松部署應(yīng)用程序
容器將應(yīng)用程序封裝到隔離的虛擬環(huán)境中聪轿,以簡化數(shù)據(jù)中心的部署。通過將所有應(yīng)用程序依賴項 (例如二進(jìn)制文件和庫) 都包括在內(nèi),應(yīng)用程序容器能在任何數(shù)據(jù)中心環(huán)境中無縫地運(yùn)行毁涉。
Docker 是領(lǐng)先的容器平臺饼齿,它現(xiàn)在可用于容器化 GPU 加速的應(yīng)用程序。這意味著無需進(jìn)行任何修改即可輕松容器化和隔離加速的應(yīng)用程序姻氨,并將其部署到任何受支持的钓辆、可使用 GPU 的基礎(chǔ)架構(gòu)上。 管理和監(jiān)控加速的數(shù)據(jù)中心將變得空前容易肴焊。
重要好處
可以將舊的加速計算應(yīng)用程序容器化前联,并部署在較新的系統(tǒng)、內(nèi)部環(huán)境或云中娶眷。
可以將特定的 GPU 資源分配給容器蛀恩,以獲得更好的隔離效果和性能。
可以輕松地跨不同的環(huán)境共享應(yīng)用程序茂浮、協(xié)同工作和測試應(yīng)用程序双谆。
有用的鏈接
NVIDIA Docker 秘訣和「如何做」指南
Example of how CUDA integrates with Docker Documentation
The full documentation is available on the repository wiki.A good place to start is to understand why NVIDIA Docker is needed in the first place.
Quick start
Assuming the NVIDIA drivers and Docker are properly installed (see installation)
# Install nvidia-docker and nvidia-docker-plugin
wget -P /tmp https://github.com/NVIDIA/nvidia-docker/releases/download/v1.0.0-rc.3/nvidia-docker_1.0.0.rc.3-1_amd64.deb
sudo dpkg -i /tmp/nvidia-docker*.deb && rm /tmp/nvidia-docker*.deb
# Test nvidia-smi
nvidia-docker run --rm nvidia/cuda nvidia-smi
# Install nvidia-docker and nvidia-docker-plugin
wget -P /tmp https://github.com/NVIDIA/nvidia-docker/releases/download/v1.0.0-rc.3/nvidia-docker-1.0.0.rc.3-1.x86_64.rpm
sudo rpm -i /tmp/nvidia-docker*.rpm && rm /tmp/nvidia-docker*.rpm
sudo systemctl start nvidia-docker
# Test nvidia-smi
nvidia-docker run --rm nvidia/cuda nvidia-smi
# Install nvidia-docker and nvidia-docker-plugin
wget -P /tmp https://github.com/NVIDIA/nvidia-docker/releases/download/v1.0.0-rc.3/nvidia-docker_1.0.0.rc.3_amd64.tar.xzsudo tar --strip-components=1 -C /usr/bin -xvf /tmp/nvidia-docker*.tar.xz && rm /tmp/nvidia-docker*.tar.xz
# Run nvidia-docker-plugin
sudo -b nohup nvidia-docker-plugin > /tmp/nvidia-docker.log
# Test nvidia-smi
nvidia-docker run --rm nvidia/cuda nvidia-smi
Issues and Contributing
A signed copy of the Contributor License Agreement needs to be provided to digits@nvidia.com before any change can be accepted.
Please let us know by filing a new issue
You can contribute by opening a pull request