方法1:
- 已知空間中兩直線AB, CD,判斷它們是否相交
?????問題的關(guān)鍵是求出這兩條直線之間的最短距離啄刹,以及在這個距離上最接近兩線的點坐標,判斷該點是否在直線AB和直線CD上凄贩。
?????首先將直線方程化為對稱式誓军,分別得到兩直線方向向量AB=(x1,y1,z1), CD=(x2,y2,z2),
再將兩向量AB, CD叉乘得到其公垂向量N=(x,y,z),在AB, CD兩直線上分別選取點E,F(任意)疲扎,得到向量M昵时,求向量M在向量N方向的投影即為兩異面直線間的距離了(就是最短距離啦)捷雕。
?????最短距離的求法:d=|向量N向量M|/|向量N|(上面是兩向量的數(shù)量積,下面是取模)壹甥。*
設(shè)兩直線與距離的交點分別為S,T救巷,可帶入公垂線N的對稱式中得到第一個方程,又因為S,T兩點分別滿足直線AB和CD的方程句柠,所以得到關(guān)于S(或T)的第二個方程浦译,聯(lián)立兩個方程分別解出來即可!
方法2:
#include<iostream>
#include<cmath>
using namespace std;
struct Point
{
double x, y, z;
Point(double x = 0, double y = 0, double z = 0) : x(x), y(y), z(z) {}
};
typedef Point Vector;
Vector operator + (Vector a, Vector b)
{
return Vector(a.x + b.x, a.y + b.y, a.z + b.z);
};
Vector operator - (Vector a, Vector b)
{
return Vector(a.x - b.x, a.y - b.y, a.z - b.z);
};
Vector operator * (Vector a, double p)
{
return Vector(a.x * p, a.y * p, a.z * p);
}
Vector operator / (Vector a, double p)
{
return Vector(a.x / p, a.y / p, a.z / p);
}
double Dot(Vector a, Vector b)
{
return a.x * b.x + a.y * b.y + a.z * b.z;
}
double Length(Vector a)
{
return sqrt(Dot(a, a));
}
Vector Cross(Point a, Point b)
{
return Vector(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
}
Point a1, b1, a2, b2;
int main()
{
int n;
scanf("%d", &n);
while(n--)
{
scanf("%lf%lf%lf", &a1.x, &a1.y, &a1.z);
scanf("%lf%lf%lf", &b1.x, &b1.y, &b1.z);
scanf("%lf%lf%lf", &a2.x, &a2.y, &a2.z);
scanf("%lf%lf%lf", &b2.x, &b2.y, &b2.z);
Vector v1 = (a1 - b1), v2 = (a2 - b2);
Vector N = Cross(v1, v2);
Vector ab = (a1 - a2);
double ans = Dot(N, ab) / Length(N);
Point p1 = a1, p2 = a2;
Vector d1 = b1 - a1, d2 = b2 - a2;
Point ans1, ans2;
double t1, t2;
t1 = Dot((Cross(p2 - p1, d2)), Cross(d1, d2));
t2 = Dot((Cross(p2 - p1, d1)), Cross(d1, d2));
double dd = Length((Cross(d1, d2)));
t1 /= dd * dd;
t2 /= dd * dd;
ans1 = (a1 + (b1 - a1) * t1);
ans2 = (a2 + (b2 - a2) * t2);
printf("%.6f\n", fabs(ans));
printf("%.6f %.6f %.6f ", ans1.x, ans1.y, ans1.z);
printf("%.6f %.6f %.6f\n", ans2.x, ans2.y, ans2.z);
}
return 0;
}
</br>