1.需求:
處理來(lái)自flume pull方式發(fā)來(lái)的數(shù)據(jù)
2.代碼:
(1)pom.xml
<dependencies>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.1.0</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-sql -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.1.0</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-streaming -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>2.1.0</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-streaming-flume -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-flume_2.11</artifactId>
<version>2.1.0</version>
</dependency>
</dependencies>
(2)option2
option2
#定義agent名,source,channel吭敢,sink的名稱
a1.sources=r1
a1.channels =c1
a1.sinks=k1
#具體定義source
a1.sources.r1.type= spooldir
a1.sources.r1.spoolDir= /opt/TestFolder/logs
a1.sources.r1.fileSuffix = .COMPLETED
#具體定義channel1
a1.channels.c1.type = memory
a1.channels.c1.capacity=10000
a1.channels.c1.transactionCapacity = 100
#具體定義sink
a1.sinks.k1.type = org.apache.spark.streaming.flume.sink.SparkSink
a1.sinks.k1.channels =c1
a1.sinks.k1.hostname=192.168.31.132
a1.sinks.k1.port=1234
#組裝source, channel,sink
a1.sources.r1.channels = c1
a1.sinks.k1.channel =c1
(3) FlumeLogPul.scala
package day1211
import org.apache.log4j.Logger
import org.apache.log4j.Level
import org.apache.spark.SparkConf
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.Seconds
import org.apache.spark.streaming.flume.FlumeUtils
import org.apache.spark.storage.StorageLevel
object FlumeLogPull {
def main(args: Array[String]): Unit = {
System.setProperty("hadoop.home.dir", "/Users/macbook/Documents/hadoop/hadoop-2.8.4")
Logger.getLogger("org.apache.spark").setLevel(Level.ERROR)
Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF)
val conf = new SparkConf().setAppName("FlumeLogPull").setMaster("local[2]")
val ssc = new StreamingContext(conf,Seconds(1))
val flumeEvent = FlumeUtils.createPollingStream(ssc, "192.168.31.211", 1234,StorageLevel.MEMORY_ONLY_SER)
val lineDStream = flumeEvent.map( e => {
new String(e.event.getBody.array)
})
lineDStream.print()
ssc.start()
ssc.awaitTermination()
}
}
3.將spark-streaming-flume-sink_2.11-2.1.0.jar拷貝到flume的jar目錄下
3.運(yùn)行:
bin/flume-ng agent -n a1 -c conf -f myconf/option2 -Dflume.root.logger=INFO,console
4.結(jié)果: