MNIST測(cè)試集安裝及調(diào)試(附MNIST數(shù)據(jù)集百度網(wǎng)盤打包下載)

今天開始進(jìn)行第一次MNIST的入門調(diào)試。 教程是按照Tensorflow中文社區(qū)的MNIST入門教程來進(jìn)行的珍昨。?

本文包含兩點(diǎn):MNIST數(shù)據(jù)集的下載與導(dǎo)入县耽;MNIST手寫數(shù)字的識(shí)別測(cè)試

1. MNIST數(shù)據(jù)集的下載與導(dǎo)入

由于某些不可名說的原因,教程中的MNIST數(shù)據(jù)集無法下載打開導(dǎo)致一直出錯(cuò)镣典,現(xiàn)在百度網(wǎng)盤放出下載資源:

百度網(wǎng)盤:鏈接: https://pan.baidu.com/s/1boOSDYJ 密碼: 58kw

有需要的同學(xué)可以下載使用兔毙。

提取和導(dǎo)入MNIST的代碼如下:

# Copyright 2015 Google Inc. All Rights Reserved.

#

# Licensed under the Apache License, Version 2.0 (the "License");

# you may not use this file except in compliance with the License.

# You may obtain a copy of the License at

#

#? ? http://www.apache.org/licenses/LICENSE-2.0

#

# Unless required by applicable law or agreed to in writing, software

# distributed under the License is distributed on an "AS IS" BASIS,

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

# See the License for the specific language governing permissions and

# limitations under the License.

# ==============================================================================

"""Functions for downloading and reading MNIST data."""

from __future__ import absolute_import

from __future__ import division

from __future__ import print_function

import gzip

import os

import tensorflow.python.platform

import numpy

from six.moves import urllib

from six.moves import xrange? # pylint: disable=redefined-builtin

import tensorflow as tf

SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'

def maybe_download(filename, work_directory):

? """Download the data from Yann's website, unless it's already here."""

? if not os.path.exists(work_directory):

? ? os.mkdir(work_directory)

? filepath = os.path.join(work_directory, filename)

? if not os.path.exists(filepath):

? ? filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)

? ? statinfo = os.stat(filepath)

? ? print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')

? return filepath

def _read32(bytestream):

? dt = numpy.dtype(numpy.uint32).newbyteorder('>')

? return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]

def extract_images(filename):

? """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""

? print('Extracting', filename)

? with gzip.open(filename) as bytestream:

? ? magic = _read32(bytestream)

? ? if magic != 2051:

? ? ? raise ValueError(

? ? ? ? ? 'Invalid magic number %d in MNIST image file: %s' %

? ? ? ? ? (magic, filename))

? ? num_images = _read32(bytestream)

? ? rows = _read32(bytestream)

? ? cols = _read32(bytestream)

? ? buf = bytestream.read(rows * cols * num_images)

? ? data = numpy.frombuffer(buf, dtype=numpy.uint8)

? ? data = data.reshape(num_images, rows, cols, 1)

? ? return data

def dense_to_one_hot(labels_dense, num_classes=10):

? """Convert class labels from scalars to one-hot vectors."""

? num_labels = labels_dense.shape[0]

? index_offset = numpy.arange(num_labels) * num_classes

? labels_one_hot = numpy.zeros((num_labels, num_classes))

? labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1

? return labels_one_hot

def extract_labels(filename, one_hot=False):

? """Extract the labels into a 1D uint8 numpy array [index]."""

? print('Extracting', filename)

? with gzip.open(filename) as bytestream:

? ? magic = _read32(bytestream)

? ? if magic != 2049:

? ? ? raise ValueError(

? ? ? ? ? 'Invalid magic number %d in MNIST label file: %s' %

? ? ? ? ? (magic, filename))

? ? num_items = _read32(bytestream)

? ? buf = bytestream.read(num_items)

? ? labels = numpy.frombuffer(buf, dtype=numpy.uint8)

? ? if one_hot:

? ? ? return dense_to_one_hot(labels)

? ? return labels

class DataSet(object):

? def __init__(self, images, labels, fake_data=False, one_hot=False,

? ? ? ? ? ? ? dtype=tf.float32):

? ? """Construct a DataSet.

? ? one_hot arg is used only if fake_data is true.? `dtype` can be either

? ? `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into

? ? `[0, 1]`.

? ? """

? ? dtype = tf.as_dtype(dtype).base_dtype

? ? if dtype not in (tf.uint8, tf.float32):

? ? ? raise TypeError('Invalid image dtype %r, expected uint8 or float32' %

? ? ? ? ? ? ? ? ? ? ? dtype)

? ? if fake_data:

? ? ? self._num_examples = 10000

? ? ? self.one_hot = one_hot

? ? else:

? ? ? assert images.shape[0] == labels.shape[0], (

? ? ? ? ? 'images.shape: %s labels.shape: %s' % (images.shape,

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? labels.shape))

? ? ? self._num_examples = images.shape[0]

? ? ? # Convert shape from [num examples, rows, columns, depth]

? ? ? # to [num examples, rows*columns] (assuming depth == 1)

? ? ? assert images.shape[3] == 1

? ? ? images = images.reshape(images.shape[0],

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? images.shape[1] * images.shape[2])

? ? ? if dtype == tf.float32:

? ? ? ? # Convert from [0, 255] -> [0.0, 1.0].

? ? ? ? images = images.astype(numpy.float32)

? ? ? ? images = numpy.multiply(images, 1.0 / 255.0)

? ? self._images = images

? ? self._labels = labels

? ? self._epochs_completed = 0

? ? self._index_in_epoch = 0

? @property

? def images(self):

? ? return self._images

? @property

? def labels(self):

? ? return self._labels

? @property

? def num_examples(self):

? ? return self._num_examples

? @property

? def epochs_completed(self):

? ? return self._epochs_completed

? def next_batch(self, batch_size, fake_data=False):

? ? """Return the next `batch_size` examples from this data set."""

? ? if fake_data:

? ? ? fake_image = [1] * 784

? ? ? if self.one_hot:

? ? ? ? fake_label = [1] + [0] * 9

? ? ? else:

? ? ? ? fake_label = 0

? ? ? return [fake_image for _ in xrange(batch_size)], [

? ? ? ? ? fake_label for _ in xrange(batch_size)]

? ? start = self._index_in_epoch

? ? self._index_in_epoch += batch_size

? ? if self._index_in_epoch > self._num_examples:

? ? ? # Finished epoch

? ? ? self._epochs_completed += 1

? ? ? # Shuffle the data

? ? ? perm = numpy.arange(self._num_examples)

? ? ? numpy.random.shuffle(perm)

? ? ? self._images = self._images[perm]

? ? ? self._labels = self._labels[perm]

? ? ? # Start next epoch

? ? ? start = 0

? ? ? self._index_in_epoch = batch_size

? ? ? assert batch_size <= self._num_examples

? ? end = self._index_in_epoch

? ? return self._images[start:end], self._labels[start:end]

def read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=tf.float32):

? class DataSets(object):

? ? pass

? data_sets = DataSets()

? if fake_data:

? ? def fake():

? ? ? return DataSet([], [], fake_data=True, one_hot=one_hot, dtype=dtype)

? ? data_sets.train = fake()

? ? data_sets.validation = fake()

? ? data_sets.test = fake()

? ? return data_sets

? TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'

? TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'

? TEST_IMAGES = 't10k-images-idx3-ubyte.gz'

? TEST_LABELS = 't10k-labels-idx1-ubyte.gz'

? VALIDATION_SIZE = 5000

? local_file = maybe_download(TRAIN_IMAGES, train_dir)

? train_images = extract_images(local_file)

? local_file = maybe_download(TRAIN_LABELS, train_dir)

? train_labels = extract_labels(local_file, one_hot=one_hot)

? local_file = maybe_download(TEST_IMAGES, train_dir)

? test_images = extract_images(local_file)

? local_file = maybe_download(TEST_LABELS, train_dir)

? test_labels = extract_labels(local_file, one_hot=one_hot)

? validation_images = train_images[:VALIDATION_SIZE]

? validation_labels = train_labels[:VALIDATION_SIZE]

? train_images = train_images[VALIDATION_SIZE:]

? train_labels = train_labels[VALIDATION_SIZE:]

? data_sets.train = DataSet(train_images, train_labels, dtype=dtype)

? data_sets.validation = DataSet(validation_images, validation_labels,

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? dtype=dtype)

? data_sets.test = DataSet(test_images, test_labels, dtype=dtype)

? return data_sets

存為“input_data.py”文件即可。至此兄春,MNIST文件的獲取和導(dǎo)入即已完成澎剥。

2. MNIST手寫識(shí)別測(cè)試

整個(gè)導(dǎo)入,訓(xùn)練赶舆,驗(yàn)證和測(cè)試的代碼如下哑姚,詳細(xì)解釋可以在上述教程中得到。

import tensorflowas tf

import input_data

mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

x = tf.placeholder("float", [None, 784])

W = tf.Variable(tf.zeros([784,10]))

b = tf.Variable(tf.zeros([10]))

y = tf.nn.softmax(tf.matmul(x,W)+b)

y_ = tf.placeholder("float", [None,10])

cross_entropy = -tf.reduce_sum(y_*tf.log(y))

train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)

init = tf.initialize_all_variables()

sess = tf.Session()

sess.run(init)

for iin range(1000):

batch_xs, batch_ys = mnist.train.next_batch(100)

sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})

correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))

accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

print sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})

執(zhí)行代碼后可得:

訓(xùn)練結(jié)果為0.9137芜茵,符合教程的結(jié)果叙量,測(cè)試成功。

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末九串,一起剝皮案震驚了整個(gè)濱河市绞佩,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌猪钮,老刑警劉巖品山,帶你破解...
    沈念sama閱讀 217,277評(píng)論 6 503
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場(chǎng)離奇詭異烤低,居然都是意外死亡肘交,警方通過查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 92,689評(píng)論 3 393
  • 文/潘曉璐 我一進(jìn)店門拂玻,熙熙樓的掌柜王于貴愁眉苦臉地迎上來酸些,“玉大人,你說我怎么就攤上這事檐蚜∑嵌” “怎么了?”我有些...
    開封第一講書人閱讀 163,624評(píng)論 0 353
  • 文/不壞的土叔 我叫張陵闯第,是天一觀的道長(zhǎng)市栗。 經(jīng)常有香客問我,道長(zhǎng)咳短,這世上最難降的妖魔是什么填帽? 我笑而不...
    開封第一講書人閱讀 58,356評(píng)論 1 293
  • 正文 為了忘掉前任,我火速辦了婚禮咙好,結(jié)果婚禮上篡腌,老公的妹妹穿的比我還像新娘。我一直安慰自己勾效,他們只是感情好嘹悼,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,402評(píng)論 6 392
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著层宫,像睡著了一般杨伙。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上萌腿,一...
    開封第一講書人閱讀 51,292評(píng)論 1 301
  • 那天限匣,我揣著相機(jī)與錄音,去河邊找鬼毁菱。 笑死米死,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的鼎俘。 我是一名探鬼主播哲身,決...
    沈念sama閱讀 40,135評(píng)論 3 418
  • 文/蒼蘭香墨 我猛地睜開眼,長(zhǎng)吁一口氣:“原來是場(chǎng)噩夢(mèng)啊……” “哼贸伐!你這毒婦竟也來了勘天?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 38,992評(píng)論 0 275
  • 序言:老撾萬榮一對(duì)情侶失蹤捉邢,失蹤者是張志新(化名)和其女友劉穎脯丝,沒想到半個(gè)月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體伏伐,經(jīng)...
    沈念sama閱讀 45,429評(píng)論 1 314
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡宠进,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,636評(píng)論 3 334
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了藐翎。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片材蹬。...
    茶點(diǎn)故事閱讀 39,785評(píng)論 1 348
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡实幕,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出堤器,到底是詐尸還是另有隱情昆庇,我是刑警寧澤,帶...
    沈念sama閱讀 35,492評(píng)論 5 345
  • 正文 年R本政府宣布闸溃,位于F島的核電站整吆,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏辉川。R本人自食惡果不足惜表蝙,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,092評(píng)論 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望乓旗。 院中可真熱鬧府蛇,春花似錦、人聲如沸寸齐。這莊子的主人今日做“春日...
    開封第一講書人閱讀 31,723評(píng)論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)渺鹦。三九已至扰法,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間毅厚,已是汗流浹背塞颁。 一陣腳步聲響...
    開封第一講書人閱讀 32,858評(píng)論 1 269
  • 我被黑心中介騙來泰國(guó)打工, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留吸耿,地道東北人祠锣。 一個(gè)月前我還...
    沈念sama閱讀 47,891評(píng)論 2 370
  • 正文 我出身青樓,卻偏偏與公主長(zhǎng)得像咽安,于是被迫代替她去往敵國(guó)和親伴网。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 44,713評(píng)論 2 354

推薦閱讀更多精彩內(nèi)容