文章作者:Tyan
博客:noahsnail.com ?|? CSDN ?|? 簡書
本文主要介紹scikit-learn中的交叉驗(yàn)證涛癌。
- Demo
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits
from sklearn.cross_validation import train_test_split
from sklearn.svm import SVC
from sklearn.learning_curve import learning_curve
from sklearn.model_selection import cross_val_score
# 加載數(shù)據(jù)集
digits = load_digits()
X = digits.data
y = digits.target
# 用SVM進(jìn)行學(xué)習(xí)并記錄loss
train_sizes, train_loss, test_loss = learning_curve(SVC(gamma = 0.001),
X, y, cv = 10, scoring = 'neg_mean_squared_error',
train_sizes = [0.1, 0.25, 0.5, 0.75, 1])
# 訓(xùn)練誤差均值
train_loss_mean = -np.mean(train_loss, axis = 1)
# 測試誤差均值
test_loss_mean = -np.mean(test_loss, axis = 1)
# 繪制誤差曲線
plt.plot(train_sizes, train_loss_mean, 'o-', color = 'r', label = 'Training')
plt.plot(train_sizes, test_loss_mean, 'o-', color = 'g', label = 'Cross-Validation')
plt.xlabel('Training data size')
plt.ylabel('Loss')
plt.legend(loc = 'best')
plt.show()
- 結(jié)果
image
)