最新版本:http://www.mashangxue123.com/tensorflow/tf2-tutorials-quickstart-beginner.html
英文版本:https://tensorflow.google.cn/alpha/tutorials/quickstart/beginner
翻譯建議PR:https://github.com/mashangxue/tensorflow2-zh/edit/master/r2/tutorials/quickstart/beginner.md
安裝命令:
pip install tensorflow-gpu==2.0.0-alpha0
要開(kāi)始,請(qǐng)將TensorFlow庫(kù)導(dǎo)入您的程序:
from __future__ import absolute_import, division, print_function, unicode_literals
import tensorflow as tf
加載并準(zhǔn)備MNIST數(shù)據(jù)集猬腰,將樣本從整數(shù)轉(zhuǎn)換為浮點(diǎn)數(shù):
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
通過(guò)堆疊圖層構(gòu)建tf.keras.Sequential
模型弦追。選擇用于訓(xùn)練的優(yōu)化器和損失函數(shù):
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
訓(xùn)練和評(píng)估模型:
model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)
現(xiàn)在,圖像分類(lèi)器在該數(shù)據(jù)集上的準(zhǔn)確度達(dá)到約98%削饵。 要了解更多信息,請(qǐng)閱讀TensorFlow教程.未巫。
最新版本:http://www.mashangxue123.com/tensorflow/tf2-tutorials-quickstart-beginner
英文版本:https://tensorflow.google.cn/alpha/tutorials/quickstart/beginner
翻譯建議PR:https://github.com/mashangxue/tensorflow2-zh/edit/master/r2/tutorials/quickstart/beginner.md