今天嘗試總結(jié)一下 tf.data 這個API的一些用法吧。之所以會用到這個API遏暴,是因為需要處理的數(shù)據(jù)量很大见咒,而且數(shù)據(jù)均是分布式的存儲在多臺服務(wù)器上,所以沒有辦法采用傳統(tǒng)的喂數(shù)據(jù)方式低匙,而是運用了 tf.data 對數(shù)據(jù)進(jìn)行了相應(yīng)的預(yù)處理,并且最近正趕上總結(jié)需要碳锈,嘗試寫一下關(guān)于 tf.data 的一些用法顽冶,有錯誤的地方一定告訴我哈。
Tensorflow的數(shù)據(jù)讀取
先來看一下Tensorflow的數(shù)據(jù)讀取機制吧
這一篇文章對于 tensorflow的數(shù)據(jù)讀取機制 講解得很不錯售碳,大噶可以先看一下强重,有一個了解。
Dataset API是怎么用的呢
雖然上面的資料關(guān)于 tf.data 講解得都很好贸人,但是我沒有找到一個很完整滴運用 tf.data.TextLineDataset() 和 tf.data.TFRecordDataset() 的例子间景,所以才想嘗試寫一寫這篇總結(jié)。
MNIST的經(jīng)典例子
本篇博客結(jié)合 mnist 的經(jīng)典例子艺智,針對不同的源數(shù)據(jù):csv數(shù)據(jù)和tfrecord數(shù)據(jù)倘要,分別運用 tf.data.TextLineDataset() 和 tf.data.TFRecordDataset() 創(chuàng)建不同的 Dataset 并運用四種不同的 Iterator ,分別是 單次力惯,可初始化碗誉,可重新初始化召嘶,以及可饋送迭代器 的方式實現(xiàn)對源數(shù)據(jù)的預(yù)處理工作父晶。
我將相關(guān)的資料放在了瀾子的Github 上,歡迎互粉哇(星星眼)弄跌。其中包括了所需的 后綴名為csv和tfrecords的源數(shù)據(jù) (data
的文件夾)甲喝,以及在 jupyter notebook實現(xiàn)的具體代碼 (tf_dataset_learn.ipynb
)。
如果有需要的同學(xué)可以直接
git clone https://github.com/lanhongvp/tensorflow_dataset_learn.git
然后用 jupyter 跑一跑看看輸出铛只,這樣可以有一個比較直觀的認(rèn)識埠胖。關(guān)于 Git和Github 的使用糠溜,大噶可以看我VSCODE_GIT這一篇博客啦。接下來直撤,針對MNIST例子做一個簡單的說明吧非竿。
tf.data.TFRecordDataset() & make_one_shot_iterator()
tf.data.TFRecordDataset() 輸入?yún)?shù)直接是后綴名為tfrecords
的文件路徑,正因如此谋竖,即可解決數(shù)據(jù)量過大红柱,導(dǎo)致無法單機訓(xùn)練的問題。本篇博客中蓖乘,文件路徑即為/Users/honglan/Desktop/train_output.tfrecords
锤悄,此處是我自己電腦上的路徑,大家可以 根據(jù)自己的需要修改為對應(yīng)的文件路徑嘉抒。
make_one_shot_iterator() 即為單次迭代器零聚,是最簡單的迭代器形式,僅支持對數(shù)據(jù)集進(jìn)行一次迭代些侍,不需要顯式初始化隶症。
配合 MNIST數(shù)據(jù)集以及tf.data.TFRecordDataset(),實現(xiàn)代碼如下岗宣。
# Validate tf.data.TFRecordDataset() using make_one_shot_iterator()
import tensorflow as tf
import numpy as np
num_epochs = 2
num_class = 10
sess = tf.Session()
# Use `tf.parse_single_example()` to extract data from a `tf.Example`
# protocol buffer, and perform any additional per-record preprocessing.
def parser(record):
keys_to_features = {
"image_raw": tf.FixedLenFeature((), tf.string, default_value=""),
"pixels": tf.FixedLenFeature((), tf.int64, default_value=tf.zeros([], dtype=tf.int64)),
"label": tf.FixedLenFeature((), tf.int64,
default_value=tf.zeros([], dtype=tf.int64)),
}
parsed = tf.parse_single_example(record, keys_to_features)
# Parse the string into an array of pixels corresponding to the image
images = tf.decode_raw(parsed["image_raw"],tf.uint8)
images = tf.reshape(images,[28,28,1])
labels = tf.cast(parsed['label'], tf.int32)
labels = tf.one_hot(labels,num_class)
pixels = tf.cast(parsed['pixels'], tf.int32)
print("IMAGES",images)
print("LABELS",labels)
return {"image_raw": images}, labels
filenames = ["/Users/honglan/Desktop/train_output.tfrecords"]
# replace the filenames with your own path
dataset = tf.data.TFRecordDataset(filenames)
print("DATASET",dataset)
# Use `Dataset.map()` to build a pair of a feature dictionary and a label
# tensor for each example.
dataset = dataset.map(parser)
print("DATASET_1",dataset)
dataset = dataset.shuffle(buffer_size=10000)
print("DATASET_2",dataset)
dataset = dataset.batch(32)
print("DATASET_3",dataset)
dataset = dataset.repeat(num_epochs)
print("DATASET_4",dataset)
iterator = dataset.make_one_shot_iterator()
# `features` is a dictionary in which each value is a batch of values for
# that feature; `labels` is a batch of labels.
features, labels = iterator.get_next()
print("FEATURES",features)
print("LABELS",labels)
print("SESS_RUN_LABELS \n",sess.run(labels))
tf.data.TFRecordDataset() & Initializable iterator
make_initializable_iterator()
為可初始化迭代器沿腰,運用此迭代器首先需要先運行顯式 iterator.initializer
操作,然后才能使用狈定。并且颂龙,可運用 可初始化迭代器實現(xiàn)訓(xùn)練集和驗證集的切換。
配合 MNIST數(shù)據(jù)集 實現(xiàn)代碼如下纽什。
# Validate tf.data.TFRecordDataset() using make_initializable_iterator()
# In order to switch between train and validation data
num_epochs = 2
num_class = 10
def parser(record):
keys_to_features = {
"image_raw": tf.FixedLenFeature((), tf.string, default_value=""),
"pixels": tf.FixedLenFeature((), tf.int64, default_value=tf.zeros([], dtype=tf.int64)),
"label": tf.FixedLenFeature((), tf.int64,
default_value=tf.zeros([], dtype=tf.int64)),
}
parsed = tf.parse_single_example(record, keys_to_features)
# Parse the string into an array of pixels corresponding to the image
images = tf.decode_raw(parsed["image_raw"],tf.uint8)
images = tf.reshape(images,[28,28,1])
labels = tf.cast(parsed['label'], tf.int32)
labels = tf.one_hot(labels,10)
pixels = tf.cast(parsed['pixels'], tf.int32)
print("IMAGES",images)
print("LABELS",labels)
return {"image_raw": images}, labels
filenames = tf.placeholder(tf.string, shape=[None])
dataset = tf.data.TFRecordDataset(filenames)
dataset = dataset.map(parser) # Parse the record into tensors
# print("DATASET",dataset)
dataset = dataset.shuffle(buffer_size=10000)
dataset = dataset.batch(32)
dataset = dataset.repeat(num_epochs)
print("DATASET",dataset)
iterator = dataset.make_initializable_iterator()
features, labels = iterator.get_next()
print("ITERATOR",iterator)
print("FEATURES",features)
print("LABELS",labels)
# Initialize `iterator` with training data.
training_filenames = ["/Users/honglan/Desktop/train_output.tfrecords"]
# replace the filenames with your own path
sess.run(iterator.initializer,feed_dict={filenames: training_filenames})
print("TRAIN\n",sess.run(labels))
# print(sess.run(features))
# Initialize `iterator` with validation data.
validation_filenames = ["/Users/honglan/Desktop/val_output.tfrecords"]
# replace the filenames with your own path
sess.run(iterator.initializer, feed_dict={filenames: validation_filenames})
print("VAL\n",sess.run(labels))
tf.data.TextLineDataset() & Reinitializable iterator
tf.data.TextLineDataset()
措嵌,輸入?yún)?shù)可以是后綴名為csv
或者是txt
的源數(shù)據(jù)的文件路徑。
此處用的迭代器是 Reinitializable iterator
芦缰,即為可重新初始化迭代器企巢。官方定義如下。配合 MNIST數(shù)據(jù)集 實現(xiàn)代碼見第二部分让蕾。
可重新初始化迭代器可以通過多個不同的 Dataset 對象進(jìn)行初始化浪规。例如,您可能有一個訓(xùn)練輸入管道探孝,它會對輸入圖片進(jìn)行隨機擾動來改善泛化笋婿;還有一個驗證輸入管道,它會評估對未修改數(shù)據(jù)的預(yù)測顿颅。這些管道通常會使用不同的 Dataset 對象缸濒,這些對象具有相同的結(jié)構(gòu)(即每個組件具有相同類型和兼容形狀)。
# validate tf.data.TextLineDataset() using Reinitializable iterator
# In order to switch between train and validation data
def decode_line(line):
# Decode the line to tensor
record_defaults = [[1.0] for col in range(785)]
items = tf.decode_csv(line, record_defaults)
features = items[1:785]
label = items[0]
features = tf.cast(features, tf.float32)
features = tf.reshape(features,[28,28,1])
label = tf.cast(label, tf.int64)
label = tf.one_hot(label,num_class)
return features,label
def create_dataset(filename, batch_size=32, is_shuffle=False, n_repeats=0):
"""create dataset for train and validation dataset"""
dataset = tf.data.TextLineDataset(filename).skip(1)
if n_repeats > 0:
dataset = dataset.repeat(n_repeats) # for train
# dataset = dataset.map(decode_line).map(normalize)
dataset = dataset.map(decode_line)
# decode and normalize
if is_shuffle:
dataset = dataset.shuffle(10000) # shuffle
dataset = dataset.batch(batch_size)
return dataset
training_filenames = ["/Users/honglan/Desktop/train.csv"]
# replace the filenames with your own path
validation_filenames = ["/Users/honglan/Desktop/val.csv"]
# replace the filenames with your own path
# Create different datasets
training_dataset = create_dataset(training_filenames, batch_size=32, \
is_shuffle=True, n_repeats=num_epochs) # train_filename
validation_dataset = create_dataset(validation_filenames, batch_size=32, \
is_shuffle=True, n_repeats=num_epochs) # val_filename
# A reinitializable iterator is defined by its structure. We could use the
# `output_types` and `output_shapes` properties of either `training_dataset`
# or `validation_dataset` here, because they are compatible.
iterator = tf.data.Iterator.from_structure(training_dataset.output_types,
training_dataset.output_shapes)
features, labels = iterator.get_next()
training_init_op = iterator.make_initializer(training_dataset)
validation_init_op = iterator.make_initializer(validation_dataset)
# Using reinitializable iterator to alternate between training and validation.
sess.run(training_init_op)
print("TRAIN\n",sess.run(labels))
# print(sess.run(features))
# Reinitialize `iterator` with validation data.
sess.run(validation_init_op)
print("VAL\n",sess.run(labels))
tf.data.TextLineDataset() & Feedable iterator.
數(shù)據(jù)集讀取方式同上一部分一樣,運用tf.data.TextLineDataset()
此處運用的迭代器是 可饋送迭代器庇配,其可以與 tf.placeholder
一起使用斩跌,通過熟悉的 feed_dict
機制選擇每次調(diào)用 tf.Session.run
時所使用的 Iterator。并使用 tf.data.Iterator.from_string_handle
定義一個可讓在兩個數(shù)據(jù)集之間切換的可饋送迭代器捞慌,結(jié)合 MNIST數(shù)據(jù)集 的代碼如下
# validate tf.data.TextLineDataset() using two different iterator
# In order to switch between train and validation data
def decode_line(line):
# Decode the line to tensor
record_defaults = [[1.0] for col in range(785)]
items = tf.decode_csv(line, record_defaults)
features = items[1:785]
label = items[0]
features = tf.cast(features, tf.float32)
features = tf.reshape(features,[28,28])
label = tf.cast(label, tf.int64)
label = tf.one_hot(label,num_class)
return features,label
def create_dataset(filename, batch_size=32, is_shuffle=False, n_repeats=0):
"""create dataset for train and validation dataset"""
dataset = tf.data.TextLineDataset(filename).skip(1)
if n_repeats > 0:
dataset = dataset.repeat(n_repeats) # for train
# dataset = dataset.map(decode_line).map(normalize)
dataset = dataset.map(decode_line)
# decode and normalize
if is_shuffle:
dataset = dataset.shuffle(10000) # shuffle
dataset = dataset.batch(batch_size)
return dataset
training_filenames = ["/Users/honglan/Desktop/train.csv"]
# replace the filenames with your own path
validation_filenames = ["/Users/honglan/Desktop/val.csv"]
# replace the filenames with your own path
# Create different datasets
training_dataset = create_dataset(training_filenames, batch_size=32, \
is_shuffle=True, n_repeats=num_epochs) # train_filename
validation_dataset = create_dataset(validation_filenames, batch_size=32, \
is_shuffle=True, n_repeats=num_epochs) # val_filename
# A feedable iterator is defined by a handle placeholder and its structure. We
# could use the `output_types` and `output_shapes` properties of either
# `training_dataset` or `validation_dataset` here, because they have
# identical structure.
handle = tf.placeholder(tf.string, shape=[])
iterator = tf.data.Iterator.from_string_handle(
handle, training_dataset.output_types, training_dataset.output_shapes)
features, labels = iterator.get_next()
# You can use feedable iterators with a variety of different kinds of iterator
# (such as one-shot and initializable iterators).
training_iterator = training_dataset.make_one_shot_iterator()
validation_iterator = validation_dataset.make_initializable_iterator()
# The `Iterator.string_handle()` method returns a tensor that can be evaluated
# and used to feed the `handle` placeholder.
training_handle = sess.run(training_iterator.string_handle())
validation_handle = sess.run(validation_iterator.string_handle())
# Using different handle to alternate between training and validation.
print("TRAIN\n",sess.run(labels, feed_dict={handle: training_handle}))
# print(sess.run(features))
# Initialize `iterator` with validation data.
sess.run(validation_iterator.initializer)
print("VAL\n",sess.run(labels, feed_dict={handle: validation_handle}))
小結(jié)
- 運用
tfrecords
處理數(shù)據(jù)的速度明顯加快 - 可以根據(jù)自身需要選擇不同的
iterator
方式對源數(shù)據(jù)進(jìn)行預(yù)處理 - 單機訓(xùn)練時也可以采用
tf.data
中API的相應(yīng)處理方式