題目選自leetcode 上的題庫
可能不一定都是最優(yōu)解润绎,答案僅供參考
每道題后面都應(yīng)相應(yīng)的難度等級抢蚀,如果沒時間做的話 可以在leetcode 按出題頻率刷題
祝大家面試取得好的成績
175. 組合兩個表
難度簡單
SQL架構(gòu)
表1: Person
+-------------+---------+
| 列名 | 類型 |
+-------------+---------+
| PersonId | int |
| FirstName | varchar |
| LastName | varchar |
+-------------+---------+
PersonId 是上表主鍵
表2: Address
+-------------+---------+
| 列名 | 類型 |
+-------------+---------+
| AddressId | int |
| PersonId | int |
| City | varchar |
| State | varchar |
+-------------+---------+
AddressId 是上表主鍵
編寫一個 SQL 查詢,滿足條件:無論 person 是否有地址信息拌汇,都需要基于上述兩表提供 person 的以下信息:
FirstName, LastName, City, State
select FirstName,LastName,City,State
from Person p
left join Address a
on a.PersonId = p.PersonId
176. 第二高的薪水
難度簡單
SQL架構(gòu)
編寫一個 SQL 查詢瞧预,獲取 Employee
表中第二高的薪水(Salary) 。
+----+--------+
| Id | Salary |
+----+--------+
| 1 | 100 |
| 2 | 200 |
| 3 | 300 |
+----+--------+
例如上述 Employee
表榨惰,SQL查詢應(yīng)該返回 200
作為第二高的薪水拜英。如果不存在第二高的薪水,那么查詢應(yīng)返回 null
琅催。
+---------------------+
| SecondHighestSalary |
+---------------------+
| 200 |
+---------------------+
SELECT
IFNULL(
(SELECT DISTINCT Salary
FROM Employee
ORDER BY Salary DESC
LIMIT 1 OFFSET 1),
NULL) AS SecondHighestSalary
177. 第N高的薪水
難度中等
編寫一個 SQL 查詢居凶,獲取 Employee
表中第 n 高的薪水(Salary)。
+----+--------+
| Id | Salary |
+----+--------+
| 1 | 100 |
| 2 | 200 |
| 3 | 300 |
+----+--------+
例如上述 Employee
表藤抡,n = 2 時侠碧,應(yīng)返回第二高的薪水 200
。如果不存在第 n 高的薪水缠黍,那么查詢應(yīng)返回 null
弄兜。
+------------------------+
| getNthHighestSalary(2) |
+------------------------+
| 200 |
+------------------------+
CREATE FUNCTION getNthHighestSalary(N INT) RETURNS INT
BEGIN
RETURN (
SELECT IFNULL(
(select salary
from(
select salary,
rank() over(order by salary desc) rk
from Employee
group by salary
)t1
where rk=N),NULL) SecondHighestSalary
);
END
178. 分數(shù)排名
難度中等
SQL架構(gòu)
編寫一個 SQL 查詢來實現(xiàn)分數(shù)排名。
如果兩個分數(shù)相同瓷式,則兩個分數(shù)排名(Rank)相同替饿。請注意,平分后的下一個名次應(yīng)該是下一個連續(xù)的整數(shù)值贸典。換句話說视卢,名次之間不應(yīng)該有“間隔”。
+----+-------+
| Id | Score |
+----+-------+
| 1 | 3.50 |
| 2 | 3.65 |
| 3 | 4.00 |
| 4 | 3.85 |
| 5 | 4.00 |
| 6 | 3.65 |
+----+-------+
例如瓤漏,根據(jù)上述給定的 Scores
表腾夯,你的查詢應(yīng)該返回(按分數(shù)從高到低排列):
+-------+------+
| Score | Rank |
+-------+------+
| 4.00 | 1 |
| 4.00 | 1 |
| 3.85 | 2 |
| 3.65 | 3 |
| 3.65 | 3 |
| 3.50 | 4 |
+-------+------+
重要提示:對于 MySQL 解決方案,如果要轉(zhuǎn)義用作列名的保留字蔬充,可以在關(guān)鍵字之前和之后使用撇號蝶俱。例如 Rank
select Score,
dense_rank() over(order by Score desc) `rank`
from Scores
180. 連續(xù)出現(xiàn)的數(shù)字
難度中等
SQL架構(gòu)
編寫一個 SQL 查詢,查找所有至少連續(xù)出現(xiàn)三次的數(shù)字饥漫。
+----+-----+
| Id | Num |
+----+-----+
| 1 | 1 |
| 2 | 1 |
| 3 | 1 |
| 4 | 2 |
| 5 | 1 |
| 6 | 2 |
| 7 | 2 |
+----+-----+
例如榨呆,給定上面的 Logs
表, 1
是唯一連續(xù)出現(xiàn)至少三次的數(shù)字庸队。
+-----------------+
| ConsecutiveNums |
+-----------------+
| 1 |
+-----------------+
select distinct Num ConsecutiveNums
from
(
select
Num,
lead(Num,1,null) over(order by id) n2,
lead(Num,2,null) over(order by id) n3
from Logs
)t1
where Num = n2 and Num = n3
181. 超過經(jīng)理收入的員工
難度簡單
SQL架構(gòu)
Employee
表包含所有員工积蜻,他們的經(jīng)理也屬于員工。每個員工都有一個 Id彻消,此外還有一列對應(yīng)員工的經(jīng)理的 Id竿拆。
+----+-------+--------+-----------+
| Id | Name | Salary | ManagerId |
+----+-------+--------+-----------+
| 1 | Joe | 70000 | 3 |
| 2 | Henry | 80000 | 4 |
| 3 | Sam | 60000 | NULL |
| 4 | Max | 90000 | NULL |
+----+-------+--------+-----------+
給定 Employee
表,編寫一個 SQL 查詢宾尚,該查詢可以獲取收入超過他們經(jīng)理的員工的姓名丙笋。在上面的表格中谢澈,Joe 是唯一一個收入超過他的經(jīng)理的員工。
+----------+
| Employee |
+----------+
| Joe |
+----------+
select a.Name Employee
from Employee a
join Employee b
on a.ManagerId = b.id
where a.Salary>b.Salary
182. 查找重復(fù)的電子郵箱
難度簡單
SQL架構(gòu)
編寫一個 SQL 查詢御板,查找 Person
表中所有重復(fù)的電子郵箱锥忿。
示例:
+----+---------+
| Id | Email |
+----+---------+
| 1 | a@b.com |
| 2 | c@d.com |
| 3 | a@b.com |
+----+---------+
根據(jù)以上輸入,你的查詢應(yīng)返回以下結(jié)果:
+---------+
| Email |
+---------+
| a@b.com |
+---------+
說明:所有電子郵箱都是小寫字母怠肋。
select Email
from Person
group by Email
having count(*)>1
183. 從不訂購的客戶
難度簡單
SQL架構(gòu)
某網(wǎng)站包含兩個表敬鬓,Customers
表和 Orders
表。編寫一個 SQL 查詢笙各,找出所有從不訂購任何東西的客戶钉答。
Customers
表:
+----+-------+
| Id | Name |
+----+-------+
| 1 | Joe |
| 2 | Henry |
| 3 | Sam |
| 4 | Max |
+----+-------+
Orders
表:
+----+------------+
| Id | CustomerId |
+----+------------+
| 1 | 3 |
| 2 | 1 |
+----+------------+
例如給定上述表格,你的查詢應(yīng)返回:
+-----------+
| Customers |
+-----------+
| Henry |
| Max |
+-----------+
select c.Name Customers
from Customers c left join Orders o
on c.id = o.CustomerId
where o.id is null
184. 部門工資最高的員工
難度中等
SQL架構(gòu)
Employee
表包含所有員工信息酪惭,每個員工有其對應(yīng)的 Id, salary 和 department Id希痴。
+----+-------+--------+--------------+
| Id | Name | Salary | DepartmentId |
+----+-------+--------+--------------+
| 1 | Joe | 70000 | 1 |
| 2 | Henry | 80000 | 2 |
| 3 | Sam | 60000 | 2 |
| 4 | Max | 90000 | 1 |
+----+-------+--------+--------------+
Department
表包含公司所有部門的信息。
+----+----------+
| Id | Name |
+----+----------+
| 1 | IT |
| 2 | Sales |
+----+----------+
編寫一個 SQL 查詢春感,找出每個部門工資最高的員工。例如虏缸,根據(jù)上述給定的表格鲫懒,Max 在 IT 部門有最高工資,Henry 在 Sales 部門有最高工資刽辙。
+------------+----------+--------+
| Department | Employee | Salary |
+------------+----------+--------+
| IT | Max | 90000 |
| Sales | Henry | 80000 |
+------------+----------+--------+
select Department,Employee,Salary
from (
select d.Name Department,e.Name Employee, e.Salary,
rank() over(partition by d.id order by Salary desc) rk
from Employee e join Department d
on e.DepartmentId=d.id
)tmp
where rk = 1
185. 部門工資前三高的所有員工
難度困難
SQL架構(gòu)
Employee
表包含所有員工信息窥岩,每個員工有其對應(yīng)的工號 Id
,姓名 Name
宰缤,工資 Salary
和部門編號 DepartmentId
颂翼。
+----+-------+--------+--------------+
| Id | Name | Salary | DepartmentId |
+----+-------+--------+--------------+
| 1 | Joe | 85000 | 1 |
| 2 | Henry | 80000 | 2 |
| 3 | Sam | 60000 | 2 |
| 4 | Max | 90000 | 1 |
| 5 | Janet | 69000 | 1 |
| 6 | Randy | 85000 | 1 |
| 7 | Will | 70000 | 1 |
+----+-------+--------+--------------+
Department
表包含公司所有部門的信息。
+----+----------+
| Id | Name |
+----+----------+
| 1 | IT |
| 2 | Sales |
+----+----------+
編寫一個 SQL 查詢慨灭,找出每個部門獲得前三高工資的所有員工朦乏。例如,根據(jù)上述給定的表氧骤,查詢結(jié)果應(yīng)返回:
+------------+----------+--------+
| Department | Employee | Salary |
+------------+----------+--------+
| IT | Max | 90000 |
| IT | Randy | 85000 |
| IT | Joe | 85000 |
| IT | Will | 70000 |
| Sales | Henry | 80000 |
| Sales | Sam | 60000 |
+------------+----------+--------+
解釋:
IT 部門中呻疹,Max 獲得了最高的工資,Randy 和 Joe 都拿到了第二高的工資筹陵,Will 的工資排第三刽锤。銷售部門(Sales)只有兩名員工,Henry 的工資最高朦佩,Sam 的工資排第二并思。
select Department,Employee,Salary
from (
select d.Name Department,e.Name Employee, e.Salary,
dense_rank() over(partition by d.id order by Salary desc) rk
from Employee e join Department d
on e.DepartmentId=d.id
)tmp
where rk <=3
196. 刪除重復(fù)的電子郵箱
難度簡單
編寫一個 SQL 查詢,來刪除 Person
表中所有重復(fù)的電子郵箱语稠,重復(fù)的郵箱里只保留 Id 最小 的那個宋彼。
+----+------------------+
| Id | Email |
+----+------------------+
| 1 | john@example.com |
| 2 | bob@example.com |
| 3 | john@example.com |
+----+------------------+
Id 是這個表的主鍵。
例如,在運行你的查詢語句之后宙暇,上面的 Person
表應(yīng)返回以下幾行:
+----+------------------+
| Id | Email |
+----+------------------+
| 1 | john@example.com |
| 2 | bob@example.com |
+----+------------------+
提示:
執(zhí)行 SQL 之后输枯,輸出是整個
Person
表。使用
delete
語句占贫。
DELETE p1 FROM Person p1,
Person p2
WHERE
p1.Email = p2.Email AND p1.Id > p2.Id
注意是刪除 桃熄,不是查詢
197. 上升的溫度
難度簡單
SQL架構(gòu)
給定一個 Weather
表,編寫一個 SQL 查詢型奥,來查找與之前(昨天的)日期相比溫度更高的所有日期的 Id瞳收。
+---------+------------------+------------------+
| Id(INT) | RecordDate(DATE) | Temperature(INT) |
+---------+------------------+------------------+
| 1 | 2015-01-01 | 10 |
| 2 | 2015-01-02 | 25 |
| 3 | 2015-01-03 | 20 |
| 4 | 2015-01-04 | 30 |
+---------+------------------+------------------+
例如,根據(jù)上述給定的 Weather
表格厢汹,返回如下 Id:
+----+
| Id |
+----+
| 2 |
| 4 |
+----+
select
Id
from
(
select Id,RecordDate,Temperature,
lag(RecordDate,1,9999-99-99) over (order by RecordDate) yd,
lag(Temperature,1,999) over(order by RecordDate ) yt
from Weather
)tmp
where Temperature >yt
and datediff(RecordDate,yd)=1
262. 行程和用戶
難度困難
SQL架構(gòu)
Trips
表中存所有出租車的行程信息螟深。每段行程有唯一鍵 Id,Client_Id 和 Driver_Id 是 Users
表中 Users_Id 的外鍵烫葬。Status 是枚舉類型界弧,枚舉成員為 (‘completed’, ‘cancelled_by_driver’, ‘cancelled_by_client’)。
+----+-----------+-----------+---------+--------------------+----------+
| Id | Client_Id | Driver_Id | City_Id | Status |Request_at|
+----+-----------+-----------+---------+--------------------+----------+
| 1 | 1 | 10 | 1 | completed |2013-10-01|
| 2 | 2 | 11 | 1 | cancelled_by_driver|2013-10-01|
| 3 | 3 | 12 | 6 | completed |2013-10-01|
| 4 | 4 | 13 | 6 | cancelled_by_client|2013-10-01|
| 5 | 1 | 10 | 1 | completed |2013-10-02|
| 6 | 2 | 11 | 6 | completed |2013-10-02|
| 7 | 3 | 12 | 6 | completed |2013-10-02|
| 8 | 2 | 12 | 12 | completed |2013-10-03|
| 9 | 3 | 10 | 12 | completed |2013-10-03|
| 10 | 4 | 13 | 12 | cancelled_by_driver|2013-10-03|
+----+-----------+-----------+---------+--------------------+----------+
Users
表存所有用戶搭综。每個用戶有唯一鍵 Users_Id垢箕。Banned 表示這個用戶是否被禁止,Role 則是一個表示(‘client’, ‘driver’, ‘partner’)的枚舉類型兑巾。
+----------+--------+--------+
| Users_Id | Banned | Role |
+----------+--------+--------+
| 1 | No | client |
| 2 | Yes | client |
| 3 | No | client |
| 4 | No | client |
| 10 | No | driver |
| 11 | No | driver |
| 12 | No | driver |
| 13 | No | driver |
+----------+--------+--------+
寫一段 SQL 語句查出 2013年10月1日 至 2013年10月3日 期間非禁止用戶的取消率条获。基于上表蒋歌,你的 SQL 語句應(yīng)返回如下結(jié)果帅掘,取消率(Cancellation Rate)保留兩位小數(shù)。
取消率的計算方式如下:(被司機或乘客取消的非禁止用戶生成的訂單數(shù)量) / (非禁止用戶生成的訂單總數(shù))
+------------+-------------------+
| Day | Cancellation Rate |
+------------+-------------------+
| 2013-10-01 | 0.33 |
| 2013-10-02 | 0.00 |
| 2013-10-03 | 0.50 |
+------------+-------------------+
SELECT T.request_at AS `Day`,
ROUND(
SUM(
IF(T.STATUS = 'completed',0,1)
)
/
COUNT(T.STATUS),
2
) AS `Cancellation Rate`
FROM trips AS T
WHERE
T.Client_Id NOT IN (
SELECT users_id
FROM users
WHERE banned = 'Yes'
)
AND
T.Driver_Id NOT IN (
SELECT users_id
FROM users
WHERE banned = 'Yes'
)
AND T.request_at BETWEEN '2013-10-01' AND '2013-10-03'
GROUP BY T.request_at
511. 游戲玩法分析 I
難度簡單
SQL架構(gòu)
活動表 Activity
:
+--------------+---------+
| Column Name | Type |
+--------------+---------+
| player_id | int |
| device_id | int |
| event_date | date |
| games_played | int |
+--------------+---------+
表的主鍵是 (player_id, event_date)堂油。
這張表展示了一些游戲玩家在游戲平臺上的行為活動修档。
每行數(shù)據(jù)記錄了一名玩家在退出平臺之前,當天使用同一臺設(shè)備登錄平臺后打開的游戲的數(shù)目(可能是 0 個)称诗。
寫一條 SQL 查詢語句獲取每位玩家 第一次登陸平臺的日期萍悴。
查詢結(jié)果的格式如下所示:
Activity 表:
+-----------+-----------+------------+--------------+
| player_id | device_id | event_date | games_played |
+-----------+-----------+------------+--------------+
| 1 | 2 | 2016-03-01 | 5 |
| 1 | 2 | 2016-05-02 | 6 |
| 2 | 3 | 2017-06-25 | 1 |
| 3 | 1 | 2016-03-02 | 0 |
| 3 | 4 | 2018-07-03 | 5 |
+-----------+-----------+------------+--------------+
Result 表:
+-----------+-------------+
| player_id | first_login |
+-----------+-------------+
| 1 | 2016-03-01 |
| 2 | 2017-06-25 |
| 3 | 2016-03-02 |
+-----------+-------------+
select player_id ,event_date first_login
from (
select player_id ,event_date,
rank() over(partition by player_id order by event_date) rk
from Activity
) tmp
where rk = 1
2.最優(yōu) (選最小日期)
select player_id ,min(event_date) first_login
from Activity
group by player_id