sklearn API 參數(shù)解析 —— CART

CART是分類與回歸樹(shù)(Classification and Regression Trees, CART)蚀同,是一棵二叉樹(shù)奔垦,可用于回歸與分類搬味。

下面是分類樹(shù)


class?sklearn.tree.DecisionTreeClassifier(criterion=’gini’,?splitter=’best’,?max_depth=None,?min_samples_split=2,?min_samples_leaf=1,?min_weight_fraction_leaf=0.0,?max_features=None,?random_state=None,?max_leaf_nodes=None,?min_impurity_decrease=0.0,?min_impurity_split=None,?class_weight=None,?presort=False)


Parameters:

1)criterion?:?string, optional (default=”gini”)

The function to measure the quality of a split. Supported criteria are “gini” for the Gini impurity and “entropy” for the information gain.

衡量生成樹(shù)的純度老赤,可選擇基尼系數(shù) 'gini'章郁,或者信息熵 'entropy'.

節(jié)點(diǎn) t 的基尼系數(shù)與信息熵計(jì)算公式:

? ? ? ? ? ? ? ? ?Gini(t)=1-\sum_{i\in t}p_{i} ^2

? ? ? ? ? ? ? ? ??Entropy(t)=-\sum_{i\in t} p_{i}logp_{i}

2)splitter?:?string, optional (default=”best”)

The strategy used to choose the split at each node. Supported strategies are “best” to choose the best split and “random” to choose the best random split.

分裂點(diǎn)選擇枉氮,有兩種方式可選擇,'best' 與 'random'暖庄。

(聊替??培廓?)

3)max_depth?:?int or None, optional (default=None)

The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples.

設(shè)置決策樹(shù)的最大深度惹悄。如果為None,停止條件為:

1)所有葉子節(jié)點(diǎn)不純度為0

2)葉子節(jié)點(diǎn)包含樣本個(gè)數(shù)低于 'min_samples_split'

4)min_samples_split?:?int, float, optional (default=2)

The minimum number of samples required to split an internal node:

If int, then consider?min_samples_split?as the minimum number.

If float, then?min_samples_split?is a fraction and?ceil(min_samples_split?*?n_samples)?are the minimum number of samples for each split.

Changed in version 0.18:?Added float values for fractions.

內(nèi)部節(jié)點(diǎn)包含的最少樣本數(shù)肩钠,可輸入整數(shù)或者小數(shù)泣港;即如果內(nèi)部節(jié)點(diǎn)包含樣本書(shū)低于這個(gè)值暂殖,則不再分裂,直接作為葉子節(jié)點(diǎn)当纱。

如果輸入整數(shù) d呛每,min_samples_split = d;

如果輸入小數(shù) f ,?min_samples_split = f * N惫东;N為樣本總數(shù)莉给。

5)min_samples_leaf?:?int, float, optional (default=1)

The minimum number of samples required to be at a leaf node. A split point at any depth will only be considered if it leaves at least?min_samples_leaf?training samples in each of the left and right branches. This may have the effect of smoothing the model, especially in regression.

If int, then consider?min_samples_leaf?as the minimum number.

If float, then?min_samples_leaf?is a fraction and?ceil(min_samples_leaf?*?n_samples)?are the minimum number of samples for each node.

Changed in version 0.18:?Added float values for fractions.

葉子節(jié)點(diǎn)包含的最少樣本數(shù)。

如果一個(gè)節(jié)點(diǎn)分裂后廉沮,左右子節(jié)點(diǎn)包含樣本書(shū)低于min_samples_leaf颓遏,則不可以分裂

6)min_weight_fraction_leaf?:?float, optional (default=0.)

The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided.

葉子節(jié)點(diǎn)包含樣本的最小權(quán)重值滞时。

7)max_features?:?int, float, string or None, optional (default=None)

The number of features to consider when looking for the best split:

If int, then consider?max_features?features at each split.

If float, then?max_features?is a fraction and?int(max_features?*?n_features)features are considered at each split.

If “auto”, then?max_features=sqrt(n_features).

If “sqrt”, then?max_features=sqrt(n_features).

If “l(fā)og2”, then?max_features=log2(n_features).

If None, then?max_features=n_features.

Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than?max_features?features.

節(jié)點(diǎn)分裂時(shí)考慮的最大特征數(shù)量叁幢。

8)random_state?:?int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by?np.random.

隨機(jī)種子/隨機(jī)生成器。

9)max_leaf_nodes?:?int or None, optional (default=None)

Grow a tree with?max_leaf_nodes?in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes.

葉子節(jié)點(diǎn)最大個(gè)數(shù)坪稽。

10)min_impurity_decrease?:?float, optional (default=0.)

A node will be split if this split induces a decrease of the impurity greater than or equal to this value.

The weighted impurity decrease equation is the following:

N_t? / N? *? (impurity? -? N_t_R? /? N_t? *? right_impurity??

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?-? ?N_t_L? /? N_t? *? left_impurity)

where?N?is the total number of samples,?N_t?is the number of samples at the current node,?N_t_L?is the number of samples in the left child, and?N_t_R?is the number of samples in the right child.

N,?N_t,?N_t_R?and?N_t_L?all refer to the weighted sum, if?sample_weight?is passed.

New in version 0.19.

不純度最小減少值曼玩,即分裂節(jié)點(diǎn)時(shí)必須滿足減少的不純度大于這個(gè)值。

如果設(shè)置了樣本權(quán)重窒百,N,?N_t,?N_t_R?and?N_t_L指的是加權(quán)和黍判,否則只是樣本計(jì)數(shù)。

11)min_impurity_split?:?float, (default=1e-7)

Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf.

Deprecated since version 0.19:?min_impurity_split?has been deprecated in favor of min_impurity_decrease?in 0.19. The default value of?min_impurity_split?will change from 1 e-7 to 0 in 0.23 and it will be removed in 0.25. Use?min_impurity_decrease?instead.

節(jié)點(diǎn)停止分裂的不純度閾值篙梢。與上一參數(shù)作用相同顷帖。0.25版本后刪除。

12)class_weight?:?dict, list of dicts, “balanced” or None, default=None

Weights associated with classes in the form?{class_label:?weight}. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y.

Note that for multioutput (including multilabel) weights should be defined for each class of every column in its own dict. For example, for four-class multilabel classification weights should be [{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of [{1:1}, {2:5}, {3:1}, {4:1}].

The “balanced” mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as?n_samples?/?(n_classes?*?np.bincount(y))

For multi-output, the weights of each column of y will be multiplied.

Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified.

設(shè)置類別權(quán)重渤滞,參數(shù) dict, list of dicts贬墩,'balanced'? 或者 'None'

輸入list, list of dict,手動(dòng)設(shè)置類別權(quán)重妄呕。

輸入 'balanced', 模型利用公式 n_samples?/?(n_classes?*?np.bincount(y)) 對(duì)每個(gè)類別樣本數(shù)量自動(dòng)調(diào)整權(quán)重陶舞,使得每個(gè)類別的權(quán)重相同。即某個(gè)類別樣本數(shù)量少绪励,單個(gè)樣本權(quán)重就大肿孵;類別樣本數(shù)量多,單個(gè)樣本權(quán)重就小疏魏。最終所有類別的權(quán)重都一樣停做。當(dāng)樣本分布不均時(shí),可以這樣操作蠢护。

輸入 'None', 默認(rèn)樣本權(quán)重都一樣雅宾。

13)presort?:?bool, optional (default=False)

Whether to presort the data to speed up the finding of best splits in fitting. For the default settings of a decision tree on large datasets, setting this to true may slow down the training process. When using either a smaller dataset or a restricted depth, this may speed up the training.

是否對(duì)樣本進(jìn)行預(yù)分類养涮。

即節(jié)點(diǎn)尋找最優(yōu)分裂點(diǎn)之前葵硕,對(duì)樣本進(jìn)行預(yù)排序眉抬,加快找到最優(yōu)分裂點(diǎn);由于增加了一步操作懈凹,數(shù)據(jù)集小的時(shí)候可以加快速度蜀变;但數(shù)據(jù)集大的時(shí)候反而會(huì)減慢速度。


Attributes:

1)classes_?:?array of shape = [n_classes] or a list of such arrays

The classes labels (single output problem), or a list of arrays of class labels (multi-output problem).

標(biāo)簽列表

2)feature_importances_?:?array of shape = [n_features]

Return the feature importances.

特征重要系數(shù)

3)max_features_?:?int,

The inferred value of max_features.

特征數(shù)量

4)n_classes_?:?int or list

The number of classes (for single output problems), or a list containing the number of classes for each output (for multi-output problems).

5)n_features_?:?int

The number of features when?fit?is performed.

訓(xùn)練時(shí)用到的特征數(shù)量

(介评?库北??)

6)n_outputs_?:?int

The number of outputs when?fit?is performed.

7)tree_?:?Tree object

The underlying Tree object. Please refer to?help(sklearn.tree._tree.Tree)?for attributes of Tree object and?Understanding the decision tree structure?for basic usage of these attributes.

返回決策樹(shù)對(duì)象(sklearn.tree._tree.Tree)

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末们陆,一起剝皮案震驚了整個(gè)濱河市寒瓦,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌坪仇,老刑警劉巖杂腰,帶你破解...
    沈念sama閱讀 212,294評(píng)論 6 493
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場(chǎng)離奇詭異椅文,居然都是意外死亡喂很,警方通過(guò)查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 90,493評(píng)論 3 385
  • 文/潘曉璐 我一進(jìn)店門皆刺,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái)少辣,“玉大人,你說(shuō)我怎么就攤上這事羡蛾±焖В” “怎么了?”我有些...
    開(kāi)封第一講書(shū)人閱讀 157,790評(píng)論 0 348
  • 文/不壞的土叔 我叫張陵林说,是天一觀的道長(zhǎng)煎殷。 經(jīng)常有香客問(wèn)我,道長(zhǎng)腿箩,這世上最難降的妖魔是什么豪直? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 56,595評(píng)論 1 284
  • 正文 為了忘掉前任,我火速辦了婚禮珠移,結(jié)果婚禮上弓乙,老公的妹妹穿的比我還像新娘。我一直安慰自己钧惧,他們只是感情好暇韧,可當(dāng)我...
    茶點(diǎn)故事閱讀 65,718評(píng)論 6 386
  • 文/花漫 我一把揭開(kāi)白布。 她就那樣靜靜地躺著浓瞪,像睡著了一般懈玻。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上乾颁,一...
    開(kāi)封第一講書(shū)人閱讀 49,906評(píng)論 1 290
  • 那天涂乌,我揣著相機(jī)與錄音艺栈,去河邊找鬼。 笑死湾盒,一個(gè)胖子當(dāng)著我的面吹牛湿右,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播罚勾,決...
    沈念sama閱讀 39,053評(píng)論 3 410
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼毅人,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來(lái)了尖殃?” 一聲冷哼從身側(cè)響起耘成,我...
    開(kāi)封第一講書(shū)人閱讀 37,797評(píng)論 0 268
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤蹋辅,失蹤者是張志新(化名)和其女友劉穎嚼锄,沒(méi)想到半個(gè)月后肩民,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 44,250評(píng)論 1 303
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡蚪战,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 36,570評(píng)論 2 327
  • 正文 我和宋清朗相戀三年牵现,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片邀桑。...
    茶點(diǎn)故事閱讀 38,711評(píng)論 1 341
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡瞎疼,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出壁畸,到底是詐尸還是另有隱情贼急,我是刑警寧澤,帶...
    沈念sama閱讀 34,388評(píng)論 4 332
  • 正文 年R本政府宣布捏萍,位于F島的核電站太抓,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏令杈。R本人自食惡果不足惜走敌,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 40,018評(píng)論 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望逗噩。 院中可真熱鬧掉丽,春花似錦、人聲如沸异雁。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 30,796評(píng)論 0 21
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)纲刀。三九已至项炼,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背锭部。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 32,023評(píng)論 1 266
  • 我被黑心中介騙來(lái)泰國(guó)打工驱闷, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人空免。 一個(gè)月前我還...
    沈念sama閱讀 46,461評(píng)論 2 360
  • 正文 我出身青樓,卻偏偏與公主長(zhǎng)得像盆耽,于是被迫代替她去往敵國(guó)和親蹋砚。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 43,595評(píng)論 2 350

推薦閱讀更多精彩內(nèi)容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi閱讀 7,312評(píng)論 0 10
  • 昔年你我有靈犀摄杂, 眉目一顧兩相宜坝咐, 而今縱有千般語(yǔ), 唇冷齒涼惘嘆息析恢!
    廿圍閱讀 406評(píng)論 0 0
  • sss
    727上上上閱讀 130評(píng)論 0 0
  • 小聰明墨坚,在某些程度上含著“奸詐”的意思。 這種耍小聰明的人從古至今一直都有映挂,在那些人眼里泽篮,就是認(rèn)為自己很聰明。其實(shí)...
    景川和景繼川是一個(gè)人閱讀 452評(píng)論 0 0
  • '喜歡一個(gè)人 不需要理由 一個(gè)憂郁的眼神 一個(gè)不經(jīng)意的小動(dòng)作 就足以穿透整個(gè)季節(jié) 喜歡一個(gè)人 不需要解釋 飄飄的長(zhǎng)...
    沉浮夢(mèng)醒閱讀 402評(píng)論 8 8