數(shù)據(jù)結(jié)構(gòu)與算法系列——遞歸

遞歸的理解

在學(xué)習(xí)數(shù)據(jù)結(jié)構(gòu)和算法的過(guò)程中,遞歸可能是比較難理解的一個(gè)知識(shí)點(diǎn),每次都試著用自己的大腦去把一步一步去想清楚切省,結(jié)果最后把自己都繞暈了。

我們很多人都遇到過(guò)這種情況帕胆,讀源碼的時(shí)候朝捆,我們想弄清楚一個(gè)方法的具體實(shí)現(xiàn),然后跟進(jìn)去發(fā)現(xiàn)里邊還有一個(gè)方法懒豹,然后我們又跟到新的方法里邊右蹦,結(jié)果發(fā)現(xiàn)里邊還有另一個(gè)新的方法……這樣跟了一層又一層,終于到了最后一層沒(méi)有再調(diào)用其他的方法歼捐,然后我們?cè)僖粚右粚臃祷厝ィ罱K弄明白了最初想了解的方法的作用(實(shí)際中這種方式是不推薦的晨汹,因?yàn)榍短缀芏鄬颖ⅲ詈蟾愕妙^都大了,卻忘記了最初是要干什么)淘这。其實(shí)這就是一個(gè)遞歸的過(guò)程剥扣,通過(guò)一層一層的去了解方法的作用巩剖,然后到最后再一層一層返回去,明白最初方法的作用钠怯。

到這里佳魔,我想大家其實(shí)對(duì)遞歸也有一定了解了。其實(shí)遞歸就是可以把原來(lái)一個(gè)大型復(fù)雜的任務(wù)晦炊,分解成一個(gè)或幾個(gè)與原任務(wù)有相類似求解方法的小任務(wù)鞠鲜,然后最后有一個(gè)終止條件。

遞歸的條件

由此我們可以總結(jié)出幾個(gè)使用遞歸需要滿足的條件:

  • 一個(gè)問(wèn)題可以分解為一個(gè)或幾個(gè)子問(wèn)題
  • 子問(wèn)題和原來(lái)問(wèn)題的求解方式相同断国,只是規(guī)模比原問(wèn)題小
  • 存在終止條件贤姆,否則會(huì)變成無(wú)限循環(huán)

舉一個(gè)例子

前幾天刷劍指offer題庫(kù),碰到了好多題都可以用遞歸的方法計(jì)算稳衬。比如其中一個(gè)經(jīng)典的跳臺(tái)階問(wèn)題霞捡。

題目描述

一只青蛙一次可以跳上1級(jí)臺(tái)階,也可以跳上2級(jí)薄疚。求該青蛙跳上一個(gè)n級(jí)的臺(tái)階總共有多少種跳法(先后次序不同算不同的結(jié)果)碧信。

解題思路

每次跳臺(tái)階都有兩個(gè)選擇,要么跳1級(jí)街夭,要么跳2級(jí)砰碴。只有1級(jí)臺(tái)階的時(shí)候只有跳1級(jí)1種跳法,有2級(jí)時(shí)有每次1級(jí)1級(jí)跳兩次和直接跳2級(jí)兩種跳法莱坎,當(dāng)有3級(jí)臺(tái)階的時(shí)候衣式,我們可以從第2級(jí)跳1級(jí)到第3級(jí),也可以從第1級(jí)跳2級(jí)到第3級(jí)檐什,所以3級(jí)臺(tái)階的總跳法碴卧,就是1級(jí)臺(tái)階的總跳法和2級(jí)臺(tái)階的總跳法的總和,由此我們就發(fā)現(xiàn)了一個(gè)規(guī)律從3級(jí)之后的算法為 f(n)=f(n-1)+f(n-2)乃正,發(fā)現(xiàn)我們要求得結(jié)果符合斐波那契數(shù)列住册。所以我們想知道 n 級(jí)臺(tái)階總共有多少跳法,只要將 n-1 的跳法加上 n-2 的跳法就可以了瓮具。

代碼實(shí)現(xiàn)
public class Solution {
    public int JumpFloor(int target) {
        if(target<3){
            return target;
        }
        return JumpFloor(target - 1) + JumpFloor(target - 2);
    }
}

怎么使用遞歸

我們現(xiàn)在也對(duì)遞歸有一定的了解了荧飞,那遞歸該怎么用呢?其實(shí)在上邊例子中其實(shí)已經(jīng)給出了答案名党。首先叹阔,我們要通過(guò)規(guī)律推導(dǎo)出遞歸的公式,然后找到遞歸的終止條件传睹,然后把公式轉(zhuǎn)化為代碼就很容易了耳幢。就比如上邊例子中的解題思路中就是這一過(guò)程的實(shí)現(xiàn)。

有人覺(jué)得遞歸難以理解,可能是走入誤區(qū)睛藻,就像我一開(kāi)始舉得讀源碼的例子启上。一定要在腦子里把遞歸展開(kāi),一層一層去調(diào)用店印,然后一層層的返回冈在,試圖去弄明白每一個(gè)過(guò)程,這其實(shí)就有點(diǎn)鉆牛角尖了按摘,尤其是當(dāng)一個(gè)問(wèn)題分解成好幾個(gè)子問(wèn)題包券,然后嵌套層數(shù)比較多的時(shí)候,我們的大腦是沒(méi)辦法把每一個(gè)過(guò)程都能想出來(lái)的院峡。相反計(jì)算機(jī)卻很擅長(zhǎng)這種重復(fù)的事情兴使,所以我們沒(méi)必要在大腦中去分解每一個(gè)步驟,我們只需要找到規(guī)律公式和終止條件照激,剩下的交給計(jì)算就行了发魄。

使用遞歸需要注意

在實(shí)際程序設(shè)計(jì)的時(shí)候,我們使用遞歸的時(shí)候要注意幾個(gè)問(wèn)題俩垃。

棧溢出問(wèn)題

我們都知道函數(shù)調(diào)用時(shí)會(huì)用棧來(lái)保存臨時(shí)變量励幼,每調(diào)用一個(gè)函數(shù),都會(huì)將臨時(shí)變量封裝為棧幀壓入內(nèi)存棧口柳,等函數(shù)執(zhí)行結(jié)束才出棧苹粟。一般系統(tǒng)棧和虛擬機(jī)棧都不是很大,當(dāng)遞歸嵌套的次數(shù)較多的時(shí)候跃闹,就會(huì)有棧溢出的風(fēng)險(xiǎn)嵌削。

所以如果遞歸的次數(shù)比較小的時(shí)候我們可以考慮使用遞歸,否則我們就要考慮其他的方法望艺。

重復(fù)計(jì)算問(wèn)題

還是以跳臺(tái)階的例子來(lái)說(shuō)明苛秕,假如我們要計(jì)算 5 級(jí)臺(tái)階有多少種跳法,我們用我們推導(dǎo)出來(lái)公式來(lái)計(jì)算找默,f(5)=f(4)+f(3)艇劫,然后我們分別要求 f(4)=f(3)+f(2),f(3)=f(2)+f(1)惩激,我們可以看到在求解 f(5) 的時(shí)候我們計(jì)算過(guò) f(3)店煞,而在計(jì)算 f(4) 的時(shí)候我們又計(jì)算了一遍 f(3),同樣 f(2) 也被計(jì)算了多次风钻,這就是重復(fù)計(jì)算的問(wèn)題顷蟀。

我們可以用散列表來(lái)儲(chǔ)存已經(jīng)計(jì)算過(guò)的 f(n),然后在每次計(jì)算的時(shí)候先去散列表里查有沒(méi)有被計(jì)算過(guò)骡技,如果有那么直接使用衩椒;如果沒(méi)有那把計(jì)算后的值存到散列表中,這樣就能避免重復(fù)計(jì)算的問(wèn)題。

我們按這個(gè)辦法修改一下上邊例子的代碼毛萌。

public class Solution {
    Map<Integer, Integer> resultMap = new HashMap<Integer, Integer>();
    public int JumpFloor(int target) {
        if(target < 3){
            return target;
        }
        if(resultMap.containsKey(target)){
            return resultMap.get(target);
        }
        int result = JumpFloor(target - 1) + JumpFloor(target - 2);
        resultMap.put(target, result);
        return result;
    }
}
效率問(wèn)題

由于多層遞歸的嵌套,所以會(huì)多次調(diào)用函數(shù)喝滞,當(dāng)次數(shù)達(dá)到一定數(shù)量的時(shí)候阁将,就會(huì)有很高的時(shí)間成本。在空間復(fù)雜度上右遭,因?yàn)檫f歸每調(diào)用一次就會(huì)在棧中保存一次現(xiàn)場(chǎng)數(shù)據(jù)做盅,所以每次都要產(chǎn)生這種額外的開(kāi)銷。

所以窘哈,雖然遞歸的代碼看上去非常簡(jiǎn)潔吹榴,但是也會(huì)有很多問(wèn)題,我們?cè)趯?shí)際使用的時(shí)候一定要注意遞歸可能會(huì)帶來(lái)的問(wèn)題滚婉。

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末图筹,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子让腹,更是在濱河造成了極大的恐慌远剩,老刑警劉巖,帶你破解...
    沈念sama閱讀 218,451評(píng)論 6 506
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件骇窍,死亡現(xiàn)場(chǎng)離奇詭異瓜晤,居然都是意外死亡,警方通過(guò)查閱死者的電腦和手機(jī)腹纳,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 93,172評(píng)論 3 394
  • 文/潘曉璐 我一進(jìn)店門(mén)痢掠,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái),“玉大人嘲恍,你說(shuō)我怎么就攤上這事足画。” “怎么了蛔钙?”我有些...
    開(kāi)封第一講書(shū)人閱讀 164,782評(píng)論 0 354
  • 文/不壞的土叔 我叫張陵锌云,是天一觀的道長(zhǎng)。 經(jīng)常有香客問(wèn)我吁脱,道長(zhǎng)桑涎,這世上最難降的妖魔是什么? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 58,709評(píng)論 1 294
  • 正文 為了忘掉前任兼贡,我火速辦了婚禮攻冷,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘遍希。我一直安慰自己等曼,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,733評(píng)論 6 392
  • 文/花漫 我一把揭開(kāi)白布。 她就那樣靜靜地躺著禁谦,像睡著了一般胁黑。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上州泊,一...
    開(kāi)封第一講書(shū)人閱讀 51,578評(píng)論 1 305
  • 那天丧蘸,我揣著相機(jī)與錄音,去河邊找鬼遥皂。 笑死力喷,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的演训。 我是一名探鬼主播弟孟,決...
    沈念sama閱讀 40,320評(píng)論 3 418
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼样悟!你這毒婦竟也來(lái)了拂募?” 一聲冷哼從身側(cè)響起,我...
    開(kāi)封第一講書(shū)人閱讀 39,241評(píng)論 0 276
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤乌奇,失蹤者是張志新(化名)和其女友劉穎没讲,沒(méi)想到半個(gè)月后,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體礁苗,經(jīng)...
    沈念sama閱讀 45,686評(píng)論 1 314
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡爬凑,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,878評(píng)論 3 336
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了试伙。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片嘁信。...
    茶點(diǎn)故事閱讀 39,992評(píng)論 1 348
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖疏叨,靈堂內(nèi)的尸體忽然破棺而出潘靖,到底是詐尸還是另有隱情,我是刑警寧澤蚤蔓,帶...
    沈念sama閱讀 35,715評(píng)論 5 346
  • 正文 年R本政府宣布卦溢,位于F島的核電站,受9級(jí)特大地震影響秀又,放射性物質(zhì)發(fā)生泄漏单寂。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,336評(píng)論 3 330
  • 文/蒙蒙 一吐辙、第九天 我趴在偏房一處隱蔽的房頂上張望宣决。 院中可真熱鬧,春花似錦昏苏、人聲如沸尊沸。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 31,912評(píng)論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)洼专。三九已至棒掠,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間壶熏,已是汗流浹背句柠。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 33,040評(píng)論 1 270
  • 我被黑心中介騙來(lái)泰國(guó)打工, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留棒假,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 48,173評(píng)論 3 370
  • 正文 我出身青樓精盅,卻偏偏與公主長(zhǎng)得像帽哑,于是被迫代替她去往敵國(guó)和親。 傳聞我的和親對(duì)象是個(gè)殘疾皇子叹俏,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 44,947評(píng)論 2 355

推薦閱讀更多精彩內(nèi)容