概述
Worker的啟動都是通過啟動shell腳本
Master啟動
master啟動從main函數(shù)開始,主要啟動Rpc環(huán)境:RpcEnv(Rpc環(huán)境):Akka和Netty
啟動一個Master侠仇,通過啟動 Shell 腳本start-master.sh
這個腳本實際啟動 spark 的 master 類
start-master.sh? -> spark-daemon.sh start org.apache.spark.deploy.master.Master
啟動時會傳入一些參數(shù)既穆,比如cpu的執(zhí)行核數(shù),內存大小,app的main方法等
查看Master類的main方法
private[spark] object Master extends Logging {
? val systemName = "sparkMaster"
? private val actorName = "Master"
? //master啟動的入口,啟動命令里會傳入一些參數(shù)
? def main(argStrings: Array[String]) {
? ? SignalLogger.register(log)
? ? //創(chuàng)建SparkConf? ? val conf = new SparkConf
? ? //保存參數(shù)到SparkConf
? ? val args = new MasterArguments(argStrings, conf)
? ? //創(chuàng)建ActorSystem
? ? val (actorSystem, _, _, _) = startSystemAndActor(args.host, args.port, args.webUiPort, conf)
? ? //等待該主Actor結束
? ? actorSystem.awaitTermination()
? }
這里主要看startSystemAndActor方法
? /**
? *? (1) 啟動Master的actor system
? *? (2) 綁定端口
? *? (3) 啟動webui和port
? *? (4) 啟動rest服務和綁定端口
? */
? def startSystemAndActor(
? ? ? host: String,
? ? ? port: Int,
? ? ? webUiPort: Int,
? ? ? conf: SparkConf): (ActorSystem, Int, Int, Option[Int]) = {
? ? val securityMgr = new SecurityManager(conf)
? ? //利用AkkaUtils創(chuàng)建ActorSystem
? ? val (actorSystem, boundPort) = AkkaUtils.createActorSystem(systemName, host, port, conf = conf,
? ? ? securityManager = securityMgr)
? ? val actor = actorSystem.actorOf(
? ? ? Props(classOf[Master], host, boundPort, webUiPort, securityMgr, conf), "Master")
? ....
? }
}
spark底層通信是Akka
通過ActorSystem創(chuàng)建Actor -> actorSystem.actorOf, 就會執(zhí)行Master的構造方法(也就是說上面調用actorOf方法的時候會創(chuàng)建actor,也就是調用Master的構造器)->然后執(zhí)行Actor生命周期方法
執(zhí)行Master的構造方法初始化一些變量
private[spark] class Master(
? ? host: String,
? ? port: Int,
? ? webUiPort: Int,
? ? val securityMgr: SecurityManager,
? ? val conf: SparkConf)
? extends Actor with ActorLogReceive with Logging with LeaderElectable {
? //主構造器
? //啟用定期器功能
? import context.dispatcher? // to use Akka's scheduler.schedule()
? val hadoopConf = SparkHadoopUtil.get.newConfiguration(conf)
? def createDateFormat = new SimpleDateFormat("yyyyMMddHHmmss")? // For application IDs
? //woker超時時間
? val WORKER_TIMEOUT = conf.getLong("spark.worker.timeout", 60) * 1000
? val RETAINED_APPLICATIONS = conf.getInt("spark.deploy.retainedApplications", 200)
? val RETAINED_DRIVERS = conf.getInt("spark.deploy.retainedDrivers", 200)
? val REAPER_ITERATIONS = conf.getInt("spark.dead.worker.persistence", 15)
? val RECOVERY_MODE = conf.get("spark.deploy.recoveryMode", "NONE")
? //一個HashSet用于保存WorkerInfo
? val workers = new HashSet[WorkerInfo]
? //一個HashMap用保存workid -> WorkerInfo
? val idToWorker = new HashMap[String, WorkerInfo]
? val addressToWorker = new HashMap[Address, WorkerInfo]
? //一個HashSet用于保存客戶端(SparkSubmit)提交的任務
? val apps = new HashSet[ApplicationInfo]
? //一個HashMap Appid-》 ApplicationInfo
? val idToApp = new HashMap[String, ApplicationInfo]
? val actorToApp = new HashMap[ActorRef, ApplicationInfo]
? val addressToApp = new HashMap[Address, ApplicationInfo]
? //等待調度的App
? val waitingApps = new ArrayBuffer[ApplicationInfo]
? val completedApps = new ArrayBuffer[ApplicationInfo]
? var nextAppNumber = 0
? val appIdToUI = new HashMap[String, SparkUI]
? //保存DriverInfo
? val drivers = new HashSet[DriverInfo]
? val completedDrivers = new ArrayBuffer[DriverInfo]
? val waitingDrivers = new ArrayBuffer[DriverInfo] // Drivers currently spooled for scheduling
主構造器執(zhí)行完就會執(zhí)行preStart –》執(zhí)行完receive方法
? //啟動定時器,進行定時檢查超時的worker
? //重點看一下CheckForWorkerTimeOut
? context.system.scheduler.schedule(0 millis, WORKER_TIMEOUT millis, self, CheckForWorkerTimeOut)
? ? ? 1、在第一次運行的時候需要等待多少時間洛搀;
2、循環(huán)的頻率佑淀;
3留美、我們想發(fā)送消息的目標ActorRef ;
4伸刃、消息
preStart方法里創(chuàng)建了一個定時器谎砾,定時檢查Woker的超時時間val WORKER_TIMEOUT = conf.getLong("spark.worker.timeout", 60) * 1000默認為60秒
到此Master的初始化的主要過程到我們已經看到了,主要就是構造一個Master的Actor進行等待消息捧颅,并初始化了集合來保存task信息和Worker信息景图,和一個定時器來檢查Worker的超時
Woker的啟動
執(zhí)行本地 shell 腳本salves.sh-> 通過讀取配置文件, 通過ssh的方式遠程連接遠端的worker節(jié)點碉哑,然后啟動 每個節(jié)點的 work 類
spark-daemon.sh start org.apache.spark.deploy.worker.Worker
腳本會啟動org.apache.spark.deploy.worker.Worker 類
看Worker源碼:
private[spark] object Worker extends Logging {
? //Worker啟動的入口
? def main(argStrings: Array[String]) {
? ? SignalLogger.register(log)
? ? val conf = new SparkConf
? ? val args = new WorkerArguments(argStrings, conf)
? ? //新創(chuàng)ActorSystem和Actor
? ? val (actorSystem, _) = startSystemAndActor(args.host, args.port, args.webUiPort, args.cores,
? ? ? args.memory, args.masters, args.workDir)
? ? actorSystem.awaitTermination()
? }
這里最重要的是Woker的startSystemAndActor
? def startSystemAndActor(
? ? ? host: String,
? ? ? port: Int,
? ? ? webUiPort: Int,
? ? ? cores: Int,
? ? ? memory: Int,
? ? ? masterUrls: Array[String],
? ? ? workDir: String,
? ? ? workerNumber: Option[Int] = None,
? ? ? conf: SparkConf = new SparkConf): (ActorSystem, Int) = {
? ? // The LocalSparkCluster runs multiple local sparkWorkerX actor systems
? ? val systemName = "sparkWorker" + workerNumber.map(_.toString).getOrElse("")
? ? val actorName = "Worker"
? ? val securityMgr = new SecurityManager(conf)
? ? //通過AkkaUtils ActorSystem
? ? val (actorSystem, boundPort) = AkkaUtils.createActorSystem(systemName, host, port,
? ? ? conf = conf, securityManager = securityMgr)
? ? val masterAkkaUrls = masterUrls.map(Master.toAkkaUrl(_, AkkaUtils.protocol(actorSystem)))
? ? //通過actorSystem.actorOf創(chuàng)建Actor? Worker-》執(zhí)行構造器 -》 preStart -》 receice
? ? actorSystem.actorOf(Props(classOf[Worker], host, boundPort, webUiPort, cores, memory,
? ? ? masterAkkaUrls, systemName, "Worker",? workDir, conf, securityMgr), name = "Worker")
? ? (actorSystem, boundPort)
? }
這里啟動該Worker的Actor對象,到此Worker的啟動初始化完成
Worker與Master通信
根據Actor生命周期接著Worker的preStart方法被調用挚币,也就是說worker一起動就會給master發(fā)消息,進行注冊(說白了就是把work信息存到master的一個list里)
? override def preStart() {
? ? assert(!registered)
? ? createWorkDir()
? ? context.system.eventStream.subscribe(self, classOf[RemotingLifecycleEvent])
? ? shuffleService.startIfEnabled()
? ? webUi = new WorkerWebUI(this, workDir, webUiPort)
? ? webUi.bind()
? ? //Worker向Master注冊
? ? registerWithMaster()
? ? ....
? }
這里調用了一個registerWithMaster方法扣典,開始向Master注冊
def registerWithMaster() {
? ? // DisassociatedEvent may be triggered multiple times, so don't attempt registration
? ? // if there are outstanding registration attempts scheduled.
? ? registrationRetryTimer match {
? ? ? case None =>
? ? ? ? registered = false
? ? ? ? //開始注冊
? ? ? ? tryRegisterAllMasters()
? ? ? ? ....
? ? }
? }
registerWithMaster里通過匹配調用了tryRegisterAllMasters方法
妆毕,接下來看
? private def tryRegisterAllMasters() {
? ? //遍歷master的地址
? ? for (masterAkkaUrl <- masterAkkaUrls) {
? ? ? logInfo("Connecting to master " + masterAkkaUrl + "...")
? ? ? //Worker得到Mater actor的遠程引用? ? ? val actor = context.actorSelection(masterAkkaUrl)
? ? ? //向Master發(fā)送注冊信息
? ? ? actor ! RegisterWorker(workerId, host, port, cores, memory, webUi.boundPort, publicAddress)//Worker向Master發(fā)送了一個消息,注冊內容包含,帶去一些參數(shù)贮尖,id,主機笛粘,端口,cpu核數(shù)湿硝,內存等待? ? }
? }
通過masterAkkaUrl和Master建立連接后
masterActor接受來自Worker的注冊信息
override def receiveWithLogging = {
? ? ......
? ? //接受來自Worker的注冊信息
? ? case RegisterWorker(id, workerHost, workerPort, cores, memory, workerUiPort, publicAddress) =>
? ? {
? ? ? logInfo("Registering worker %s:%d with %d cores, %s RAM".format(
? ? ? ? workerHost, workerPort, cores, Utils.megabytesToString(memory)))
? ? ? if (state == RecoveryState.STANDBY) {
? ? ? ? // ignore, don't send response
? ? ? ? //判斷這個worker是否已經注冊過
? ? ? } else if (idToWorker.contains(id)) {
? ? ? ? //如果注冊過薪前,告訴worker注冊失敗
? ? ? ? sender ! RegisterWorkerFailed("Duplicate worker ID")
? ? ? } else {
? ? ? ? //沒有注冊過,把來自Worker的注冊信息封裝到WorkerInfo當中
? ? ? ? val worker = new WorkerInfo(id, workerHost, workerPort, cores, memory,
? ? ? ? ? sender, workerUiPort, publicAddress)
? ? ? ? if (registerWorker(worker)) {
? ? ? ? ? //用持久化引擎記錄Worker的信息
? ? ? ? ? persistenceEngine.addWorker(worker)
? ? ? ? ? //向Worker反饋信息关斜,告訴Worker注冊成功
? ? ? ? ? sender ! RegisteredWorker(masterUrl, masterWebUiUrl)
? ? ? ? ? schedule()
? ? ? ? } else {
? ? ? ? ? val workerAddress = worker.actor.path.address
? ? ? ? ? logWarning("Worker registration failed. Attempted to re-register worker at same " +
? ? ? ? ? ? "address: " + workerAddress)
? ? ? ? ? sender ! RegisterWorkerFailed("Attempted to re-register worker at same address: "
? ? ? ? ? ? + workerAddress)
? ? ? ? }
? ? ? }
? ? }
注冊成功后Worker向master發(fā)送心跳
override def receiveWithLogging = {
? ? ? case RegisteredWorker(masterUrl, masterWebUiUrl) =>
? ? ? logInfo("Successfully registered with master " + masterUrl)
? ? ? registered = true
? ? ? changeMaster(masterUrl, masterWebUiUrl)
? ? ? //啟動定時器示括,定時發(fā)送心跳Heartbeat
? ? ? context.system.scheduler.schedule(0 millis, HEARTBEAT_MILLIS millis, self, SendHeartbeat)
? ? ? if (CLEANUP_ENABLED) {
? ? ? ? logInfo(s"Worker cleanup enabled; old application directories will be deleted in: $workDir")
? ? ? ? context.system.scheduler.schedule(CLEANUP_INTERVAL_MILLIS millis,
? ? ? ? ? CLEANUP_INTERVAL_MILLIS millis, self, WorkDirCleanup)
? ? ? }
worker接受來自Master的注冊成功的反饋信息,啟動定時器,定時發(fā)送心跳Heartbeat
? ? case SendHeartbeat =>
? ? ? //worker發(fā)送心跳的目的就是為了報活
? ? ? if (connected) { master ! Heartbeat(workerId) }
Master接收心跳消息蚤吹,更新最后一次心跳時間
? override def receiveWithLogging = {
? ? ? ? ....
? ? case Heartbeat(workerId) => {
? ? ? idToWorker.get(workerId) match {
? ? ? ? case Some(workerInfo) =>
? ? ? ? ? //更新最后一次心跳時間
? ? ? ? ? workerInfo.lastHeartbeat = System.currentTimeMillis()
? ? ? ? ? .....
? ? ? }
? ? }
}
記錄并更新workerInfo.lastHeartbeat = System.currentTimeMillis()最后一次心跳時間
Master的定時任務會不斷的發(fā)送一個CheckForWorkerTimeOut內部消息不斷的輪詢集合里的Worker信息例诀,如果超過60秒就將Worker信息移除
? //檢查超時的Worker
? ? case CheckForWorkerTimeOut => {
? ? ? timeOutDeadWorkers()
? ? }
timeOutDeadWorkers方法
? def timeOutDeadWorkers() {
? ? // Copy the workers into an array so we don't modify the hashset while iterating through it
? ? val currentTime = System.currentTimeMillis()
? ? val toRemove = workers.filter(_.lastHeartbeat < currentTime - WORKER_TIMEOUT).toArray
? ? for (worker <- toRemove) {
? ? ? if (worker.state != WorkerState.DEAD) {
? ? ? ? logWarning("Removing %s because we got no heartbeat in %d seconds".format(
? ? ? ? ? worker.id, WORKER_TIMEOUT/1000))
? ? ? ? removeWorker(worker)
? ? ? } else {
? ? ? ? if (worker.lastHeartbeat < currentTime - ((REAPER_ITERATIONS + 1) * WORKER_TIMEOUT)) {
? ? ? ? ? workers -= worker // we've seen this DEAD worker in the UI, etc. for long enough; cull it
? ? ? ? }
? ? ? }
? ? }
? }
如果 (最后一次心跳時間<當前時間-超時時間)則判斷為Worker超時随抠,
將集合里的信息移除裁着。
當下一次收到心跳信息時繁涂,如果是已注冊過的,workerId不為空二驰,但是WorkerInfo已被移除的條件扔罪,就會sender ! ReconnectWorker(masterUrl)發(fā)送一個重新注冊的消息
case None =>
? ? ? ? ? if (workers.map(_.id).contains(workerId)) {
? ? ? ? ? ? logWarning(s"Got heartbeat from unregistered worker $workerId." +
? ? ? ? ? ? ? " Asking it to re-register.")
? ? ? ? ? ? //發(fā)送重新注冊的消息
? ? ? ? ? ? sender ! ReconnectWorker(masterUrl)
? ? ? ? ? } else {
? ? ? ? ? ? logWarning(s"Got heartbeat from unregistered worker $workerId." +
? ? ? ? ? ? ? " This worker was never registered, so ignoring the heartbeat.")
? ? ? ? ? }
Master與Worker啟動的大致的通信流程到此ok