#從TensorFlow中導(dǎo)入MNIST數(shù)據(jù)集
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data",one_hot=True)
#定義變量
x = tf.placeholder(tf.float32,[None,784])
y_ = tf.placeholder(tf.float32,[None,10])
#創(chuàng)建神經(jīng)網(wǎng)格
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x,W) + b)
#二次代價(jià)函數(shù)
loss = tf.reduce_mean(tf.square(y_ - y))
#梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
#初始化變量
init = tf.global_variables_initializer()
#求準(zhǔn)確率
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
with tf.Session() as sess:
sess.run(init)
#對(duì)55000個(gè)訓(xùn)練數(shù)據(jù)進(jìn)行21次訓(xùn)練
for n in range(21):
for i in range(550):
batch_xs,batch_ys=mnist.train.next_batch(100)
sess.run(train_step,feed_dict={x:batch_xs,y_:batch_ys})
acc=sess.run(accuracy,feed_dict={x:mnist.test.images,y_:mnist.test.labels})
print("Iter " + str(n)+",Testing Accuracy "+str(acc))