莫濤大神的論文
曼哈頓距離最小生成樹問題可以簡(jiǎn)述如下:
給定二維平面上的N個(gè)點(diǎn),在兩點(diǎn)之間連邊的代價(jià)為其曼哈頓距離悔橄,求使所有點(diǎn)連通的最小代價(jià)蒸其。
曼哈頓距離:給定二維平面上的N個(gè)點(diǎn)帝美,在兩點(diǎn)之間連邊的代價(jià)碍彭。(即distance(P1,P2) = |x1-x2|+|y1-y2|)
樸素的算法可以用O(n^2)的Prim,或者處理出所有邊做Kruskal悼潭,但在這里總邊數(shù)有O( n^2)條庇忌,所以Kruskal的復(fù)雜度變成了O( n^2logn)。
而莫濤的算法時(shí)間復(fù)雜度是nlogn
算法步驟:
先將點(diǎn)按x坐標(biāo)升序排序舰褪;
以任一一個(gè)點(diǎn)為端點(diǎn)皆疹,將平面分為八塊,每塊占45度角占拍,那么在生成樹的最優(yōu)解中略就,每個(gè)塊與這個(gè)點(diǎn)至多有一條邊,即一個(gè)點(diǎn)最多分別向八個(gè)方向最近的點(diǎn)連接一條邊晃酒,一條邊兩個(gè)點(diǎn)共用表牢,同時(shí),有四個(gè)方向是兩兩對(duì)稱的贝次,所以只需要求出四塊(一般求第一象限和第四象限)所以最后邊數(shù)為4 * n崔兴。
B - 曼哈頓最小生成樹
題意;
求曼哈頓最小生成樹的第n-k條邊的權(quán)值
題解:
實(shí)現(xiàn)一:線段樹+莫隊(duì)算法
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int MAXN=10010;
const int MAXE=4*MAXN;
/*Kruskal Algorithm*/
int parent[MAXN];
int father(int u)
{
while(parent[u]!=u)
{
parent[u]=parent[parent[u]];
u=parent[u];
}
return u;
}
bool connect(int u,int v)
{
int fu=father(u);
int fv=father(v);
if(fv==fu) return false;
parent[fu]=fv;
return true;
}
struct Edge
{
int u,v,w;
Edge(){}
Edge(int u,int v,int w):u(u),v(v),w(w){}
bool operator<(const Edge &ee)const
{
return w<ee.w;
}
};
Edge edge[MAXE];
int cnt;
void addEdge(int u,int v,int val)
{
edge[cnt++]=Edge(u,v,val);
}
/*線段樹 */
struct Point
{
int x,y,id;
bool operator<(const Point &t) const
{
if(x==t.x) return y<t.y;
return x<t.x;
}
};
Point point[MAXN];
const int INF=0x3f3f3f3f;
struct Node
{
int len,id;
};
Node tree[(MAXN+20)<<2];
void build(int l,int r,int rt)//init tree
{
tree[rt].len=INF;
tree[rt].id=-1;
if(l==r) return;
int mid=(l+r)>>1;
build(l,mid,rt<<1);
build(mid+1,r,rt<<1|1);
}
void update(int l,int r,int rt,Point &p,int pos)//push Point into tree
{
if(l==r)
{
if(tree[rt].len>p.x+p.y)//be careful
{
tree[rt].len=p.x+p.y;
tree[rt].id=p.id;
}
return;
}
int mid=(l+r)>>1;
if(pos<=mid) update(l,mid,rt<<1,p,pos);
else update(mid+1,r,rt<<1|1,p,pos);
if(tree[rt<<1].len<tree[rt<<1|1].len)
{
tree[rt].len=tree[rt<<1].len;
tree[rt].id=tree[rt<<1].id;
}
else
{
tree[rt].len=tree[rt<<1|1].len;
tree[rt].id=tree[rt<<1|1].id;
}
}
Node query(int l,int r,int L,int R,int rt)//從大于point[i].y-point[i].x的節(jié)點(diǎn)找最小值
{
if(l==L&&r==R) return tree[rt];
int mid=(l+r)>>1;
if(R<=mid) return query(l,mid,L,R,rt<<1);
else if(L>=mid+1) return query(mid+1,r,L,R,rt<<1|1);
else
{
Node t1=query(l,mid,L,mid,rt<<1);
Node t2=query(mid+1,r,mid+1,R,rt<<1|1);
if(t1.len<t2.len) return t1;
else return t2;
}
}
int cpy[MAXN],arr[MAXN];
void solve(int n)
{
sort(point+1,point+1+n);
for(int i=1;i<=n;i++)
{
arr[i]=point[i].y-point[i].x;
cpy[i]=arr[i];
}
sort(cpy+1,cpy+1+n);
int cc=unique(cpy+1,cpy+1+n)-cpy;
for(int i=1;i<=n;i++)
{
arr[i]=lower_bound(cpy+1,cpy+cc,arr[i])-cpy;//離散化
}
build(1,n,1);
for(int i=n;i>0;i--)
{
int len=point[i].x+point[i].y;
Node t=query(1,n,arr[i],n,1);
if(t.id!=-1) addEdge(point[i].id,t.id,abs(len-t.len));
update(1,n,1,point[i],arr[i]);
}
}
/*Kruskal Algorithm*/
int kruskal_mst(int k,int n)
{
int u,v,sum=0;
sort(edge,edge+cnt);
for(int i=0;i<cnt;i++)
{
u=edge[i].u;v=edge[i].v;
if(connect(u,v))
{
sum++;
if(sum==n-k) return edge[i].w;
}
}
}
int main()
{
int n,k;
cnt=0;
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)
{
scanf("%d%d",&point[i].x,&point[i].y);
point[i].id=i;
}
for(int i=1;i<=n;i++)
{
parent[i]=i;
}
solve(n);//第一象限左上角
for(int i=1;i<=n;i++)
point[i].y=-point[i].y;
solve(n);//第一象限右下角
for(int i=1;i<=n;i++)
point[i].y=-point[i].y,swap(point[i].x,point[i].y);
solve(n);//第四象限左下角
for(int i=1;i<=n;i++)
point[i].y=-point[i].y;
solve(n);//第四象限右上角
printf("%d\n",kruskal_mst(k,n));
}
實(shí)現(xiàn)二:
樹狀數(shù)組+莫隊(duì)算法
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int MAXN=100010;
const int MAXE=MAXN*4;
const int INF=0x3f3f3f3f;
/*kruskal alrorithm*/
int father[MAXN],n;
int parent(int u)
{
while(father[u]!=u)
{
father[u]=father[father[u]];
u=father[u];
}
return u;
}
bool connect(int u,int v)
{
int fu=parent(u);
int fv=parent(v);
if(fu==fv) return false;
father[fu]=fv;
return true;
}
struct Point
{
int x,y,id;//id is for union_found
bool operator <(const Point &p) const
{
if(x==p.x) return y<p.y;
return x<p.x;
}
};
Point point[MAXN];
/*數(shù)狀數(shù)組*/
struct Node
{
int len,id;//len is to find min(x+y), id is for union_found
void init(){len=INF;id=-1;}
};
Node c[MAXN<<2];
/*倒敘的樹狀數(shù)組,求的是后綴*/
void add(int x,Point &p)//push point into tree
{
int len=p.x+p.y;
while(x>0)
{
if(c[x].len>len)
{
c[x].id=p.id;
c[x].len=len;
}
x-=x&(-x);
}
}
/*在區(qū)間[x,y]求最小值*/
Node query(int x,int y)//從大于point[i].y-point[i].x的節(jié)點(diǎn)找最小值
{
Node t;t.init();
while(x<=y)
{
if(t.len>c[x].len)
{
t=c[x];
}
x+=x&(-x);
}
return t;
}
struct Edge
{
int u,v,w;
Edge(){}
Edge(int u,int v,int w):u(u),v(v),w(w){}
bool operator <(const Edge &ee) const
{
return w<ee.w;
}
};
Edge edge[MAXE];
int cnt;
void addEdge(int u,int v,int val)
{
edge[cnt++]=Edge(u,v,val);
}
int cpy[MAXN],arr[MAXN];
void solve(int n)
{
sort(point+1,point+1+n);
for(int i=1;i<=n;i++)
{
arr[i]=cpy[i]=point[i].y-point[i].x;
}
sort(cpy+1,cpy+1+n);
int cc=unique(cpy+1,cpy+1+n)-cpy;
for(int i=1;i<=n;i++)
{
arr[i]=lower_bound(cpy+1,cpy+cc,arr[i])-cpy;
}
for(int i=1;i<=cc;i++) c[i].init();
for(int i=n;i>0;i--)
{
Node t=query(arr[i],cc);
if(t.id!=-1) addEdge(point[i].id,t.id,abs(point[i].x+point[i].y-t.len));
add(arr[i],point[i]);
}
}
long long kruskal_mst(int k)
{
int u,v;
long long sum=0;
sort(edge,edge+cnt);
for(int i=0;i<cnt;i++)
{
u=edge[i].u;v=edge[i].v;
if(connect(u,v))
{
sum++;
if(sum==n-k) return edge[i].w;
}
}
return sum;
}
int main()
{
int k;
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)
{
scanf("%d%d",&point[i].x,&point[i].y);
point[i].id=i;
}
for(int i=1;i<=n;i++)
{
father[i]=i;
}
cnt=0;
solve(n);
for(int i=1;i<=n;i++)
point[i].y=-point[i].y;
solve(n);
for(int i=1;i<=n;i++)
point[i].y=-point[i].y,swap(point[i].x,point[i].y);
solve(n);
for(int i=1;i<=n;i++)
point[i].y=-point[i].y;
solve(n);
printf("%lld\n",kruskal_mst(k));
}
C - Another Minimum Spanning Tree
題意:
求解曼哈頓最小生成樹
線段樹+莫隊(duì)算法
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int MAXN=100010;
const int MAXE=4*MAXN;
/*Kruskal Algorithm*/
int parent[MAXN];
int father(int u)
{
while(parent[u]!=u)
{
parent[u]=parent[parent[u]];
u=parent[u];
}
return u;
}
bool connect(int u,int v)
{
int fu=father(u);
int fv=father(v);
if(fv==fu) return false;
parent[fu]=fv;
return true;
}
struct Edge
{
int u,v,w;
Edge(){}
Edge(int u,int v,int w):u(u),v(v),w(w){}
bool operator<(const Edge &ee)const
{
return w<ee.w;
}
};
Edge edge[MAXE];
int cnt;
void addEdge(int u,int v,int val)
{
edge[cnt++]=Edge(u,v,val);
}
/*線段樹 */
struct Point
{
int x,y,id;
bool operator<(const Point &t) const
{
if(x==t.x) return y<t.y;
return x<t.x;
}
};
Point point[MAXN];
const int INF=0x3f3f3f3f;
struct Node
{
int len,id;
};
Node tree[(MAXN+20)<<2];
void build(int l,int r,int rt)//init tree
{
tree[rt].len=INF;
tree[rt].id=-1;
if(l==r) return;
int mid=(l+r)>>1;
build(l,mid,rt<<1);
build(mid+1,r,rt<<1|1);
}
void update(int l,int r,int rt,Point &p,int pos)//push Point into tree
{
if(l==r)
{
if(tree[rt].len>p.x+p.y)
{
tree[rt].len=p.x+p.y;
tree[rt].id=p.id;
}
return;
}
int mid=(l+r)>>1;
if(pos<=mid) update(l,mid,rt<<1,p,pos);
else update(mid+1,r,rt<<1|1,p,pos);
if(tree[rt<<1].len<tree[rt<<1|1].len)
{
tree[rt].len=tree[rt<<1].len;
tree[rt].id=tree[rt<<1].id;
}
else
{
tree[rt].len=tree[rt<<1|1].len;
tree[rt].id=tree[rt<<1|1].id;
}
}
Node query(int l,int r,int L,int R,int rt)//從大于point[i].y-point[i].x的節(jié)點(diǎn)找最小值
{
if(l==L&&r==R) return tree[rt];
int mid=(l+r)>>1;
if(R<=mid) return query(l,mid,L,R,rt<<1);
else if(L>=mid+1) return query(mid+1,r,L,R,rt<<1|1);
else
{
Node t1=query(l,mid,L,mid,rt<<1);
Node t2=query(mid+1,r,mid+1,R,rt<<1|1);
if(t1.len<t2.len) return t1;
else return t2;
}
}
int cpy[MAXN],arr[MAXN];
void solve(int n)
{
sort(point+1,point+1+n);
for(int i=1;i<=n;i++)
{
arr[i]=point[i].y-point[i].x;
cpy[i]=arr[i];
}
sort(cpy+1,cpy+1+n);
int cc=unique(cpy+1,cpy+1+n)-cpy;//離散化
for(int i=1;i<=n;i++)
{
arr[i]=lower_bound(cpy+1,cpy+cc,arr[i])-cpy;
}
build(1,n,1);
for(int i=n;i>0;i--)
{
int len=point[i].x+point[i].y;
Node t=query(1,n,arr[i],n,1);
if(t.id!=-1) addEdge(point[i].id,t.id,abs(len-t.len));
update(1,n,1,point[i],arr[i]);
}
}
/*Kruskal Algorithm*/
int kruskal_mst(int n)
{
int u,v;
long long sum=0;
sort(edge,edge+cnt);
for(int i=0;i<cnt;i++)
{
u=edge[i].u;v=edge[i].v;
if(connect(u,v))
{
sum+=(long long) edge[i].w;
}
}
return sum;
}
int main()
{
int n,cas=1;
while(scanf("%d",&n)!=EOF,n){
cnt=0;
for(int i=1;i<=n;i++)
{
scanf("%d%d",&point[i].x,&point[i].y);
point[i].id=i;
}
for(int i=1;i<=n;i++)
{
parent[i]=i;
}
solve(n);
for(int i=1;i<=n;i++)
point[i].y=-point[i].y;
solve(n);
for(int i=1;i<=n;i++)
point[i].y=-point[i].y,swap(point[i].x,point[i].y);
solve(n);
for(int i=1;i<=n;i++)
point[i].y=-point[i].y;
solve(n);
printf("Case %d: Total Weight = %lld\n",cas++,kruskal_mst(n));
}
}
樹狀數(shù)組+莫隊(duì)算法
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int MAXN=100010;
const int MAXE=MAXN*4;
const int INF=0x3f3f3f3f;
/*kruskal alrorithm*/
int father[MAXN],n;
int parent(int u)
{
while(father[u]!=u)
{
father[u]=father[father[u]];
u=father[u];
}
return u;
}
bool connect(int u,int v)
{
int fu=parent(u);
int fv=parent(v);
if(fu==fv) return false;
father[fu]=fv;
return true;
}
struct Point
{
int x,y,id;//id is for union_found
bool operator <(const Point &p) const
{
if(x==p.x) return y<p.y;
return x<p.x;
}
};
Point point[MAXN];
/*數(shù)狀數(shù)組*/
struct Node
{
int len,id;//len is to find min(x+y), id is for union_found
void init(){len=INF;id=-1;}
};
Node c[MAXN<<2];
/*倒敘的樹狀數(shù)組浊闪,求的是后綴*/
void add(int x,Point &p)//push point into tree
{
int len=p.x+p.y;
while(x>0)
{
if(c[x].len>len)
{
c[x].id=p.id;
c[x].len=len;
}
x-=x&(-x);
}
}
/*在區(qū)間[x,y]求最小值*/
Node query(int x,int y)//從大于point[i].y-point[i].x的節(jié)點(diǎn)找最小值
{
Node t;t.init();
while(x<=y)
{
if(t.len>c[x].len)
{
t=c[x];
}
x+=x&(-x);
}
return t;
}
struct Edge
{
int u,v,w;
Edge(){}
Edge(int u,int v,int w):u(u),v(v),w(w){}
bool operator <(const Edge &ee) const
{
return w<ee.w;
}
};
Edge edge[MAXE];
int cnt;
void addEdge(int u,int v,int val)
{
edge[cnt++]=Edge(u,v,val);
}
int cpy[MAXN],arr[MAXN];
void solve(int n)
{
sort(point+1,point+1+n);
for(int i=1;i<=n;i++)
{
arr[i]=cpy[i]=point[i].y-point[i].x;
}
sort(cpy+1,cpy+1+n);
int cc=unique(cpy+1,cpy+1+n)-cpy;
for(int i=1;i<=n;i++)
{
arr[i]=lower_bound(cpy+1,cpy+cc,arr[i])-cpy;
}
for(int i=1;i<=cc;i++) c[i].init();
for(int i=n;i>0;i--)
{
Node t=query(arr[i],cc);
if(t.id!=-1) addEdge(point[i].id,t.id,abs(point[i].x+point[i].y-t.len));
add(arr[i],point[i]);
}
}
long long kruskal_mst()
{
int u,v;
long long sum=0;
sort(edge,edge+cnt);
for(int i=0;i<cnt;i++)
{
u=edge[i].u;v=edge[i].v;
if(connect(u,v))
{
sum+=(long long) edge[i].w;
}
}
return sum;
}
int main()
{
int cas=1;
while(scanf("%d",&n)!=EOF,n)
{
for(int i=1;i<=n;i++)
{
scanf("%d%d",&point[i].x,&point[i].y);
point[i].id=i;
}
for(int i=1;i<=n;i++)
{
father[i]=i;
}
cnt=0;
solve(n);
for(int i=1;i<=n;i++)
point[i].y=-point[i].y;
solve(n);
for(int i=1;i<=n;i++)
point[i].y=-point[i].y,swap(point[i].x,point[i].y);
solve(n);
for(int i=1;i<=n;i++)
point[i].y=-point[i].y;
solve(n);
printf("Case %d: Total Weight = %lld\n",cas++,kruskal_mst());
}
}