Pascal VOC2012 數(shù)據(jù)集下載地址:
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
代碼
import os
import torch
import xml.etree.ElementTree as ET
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from config import Config
import numpy as np
from PIL import Image
image_transform = transforms.Compose([
transforms.Resize(256),
transforms.RandomCrop(256),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()
])
class VOCDataset(Dataset):
def __init__(self, data_dir, train=True, transform=None):
super(VOCDataset, self).__init__()
# 獲取txt文件
self.data_dir = data_dir
if (train):
split = 'trainval'
else:
split = 'val'
id_list_file = os.path.join(self.data_dir, 'ImageSets/Main/{0}.txt'.format(split))
self.ids = [id_.strip() for id_ in open(id_list_file)]
self.transform = transform
def __getitem__(self, item):
id = self.ids[item]
# 解析xml文件得到圖片的bbox, label
anno = ET.parse(
os.path.join(self.data_dir, 'Annotations', id + '.xml'))
bbox = []
label = []
for obj in anno.findall('object'):
bndbox_anno = obj.find('bndbox')
box = []
for tag in ('ymin', 'xmin', 'ymax', 'xmax'):
box.append(int(bndbox_anno.find(tag).text) - 1)
bbox.append(box)
name = obj.find('name').text.lower().strip()
label.append(Config.VOC_BBOX_LABEL_NAMES.index(name))
bbox = np.stack(bbox).astype(np.float32)
label = np.stack(label).astype(np.float32)
# 獲取對(duì)應(yīng)圖片
img_file = os.path.join(self.data_dir, 'JPEGImages', id + '.jpg')
img = Image.open(img_file)
if self.transform:
img = self.transform(img)
if img.ndim == 2:
img = img[np.newaxis]
# (H,W,C)->(C,H,W)
img = img.transpose(2, 0)
return img, bbox, label
def __len__(self):
return len(self.ids)
if __name__ == '__main__':
dataset = VOCDataset(data_dir=Config.voc_data_dir, train=True, transform=image_transform)
data_loader = DataLoader(dataset, batch_size=1)
for idx, (image, bbox, lable) in enumerate(data_loader):
print (bbox)
常量文件 config.py
class Config:
voc_data_dir = 'VOCdevkit/VOC2012'
VOC_BBOX_LABEL_NAMES = (
'aeroplane',
'bicycle',
'bird',
'boat',
'bottle',
'bus',
'car',
'cat',
'chair',
'cow',
'diningtable',
'dog',
'horse',
'motorbike',
'person',
'pottedplant',
'sheep',
'sofa',
'train',
'tvmonitor'
)